» Articles » PMID: 36691698

Causes and Consequences of Endogenous Hypoxia on Growth and Metabolism of Developing Maize Kernels

Abstract

Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.

Citing Articles

Advances in seed hypoxia research.

Rolletschek H, Borisjuk L, Gomez-Alvarez E, Pucciariello C Plant Physiol. 2024; 197(1).

PMID: 39471319 PMC: 11852284. DOI: 10.1093/plphys/kiae556.


MRI-Seed-Wizard: combining deep learning algorithms with magnetic resonance imaging enables advanced seed phenotyping.

Plutenko I, Radchuk V, Mayer S, Keil P, Ortleb S, Wagner S J Exp Bot. 2024; 76(2):393-410.

PMID: 39383098 PMC: 11714760. DOI: 10.1093/jxb/erae408.


Metabolic imaging in living plants: A promising field for chemical exchange saturation transfer (CEST) MRI.

Mayer S, Rolletschek H, Radchuk V, Wagner S, Ortleb S, Gundel A Sci Adv. 2024; 10(38):eadq4424.

PMID: 39292788 PMC: 11409970. DOI: 10.1126/sciadv.adq4424.


A MYB-related transcription factor ZmMYBR29 is involved in grain filling.

Wu J, Wang X, Yan R, Zheng G, Zhang L, Wang Y BMC Plant Biol. 2024; 24(1):458.

PMID: 38797860 PMC: 11129368. DOI: 10.1186/s12870-024-05163-9.


Endosperm cell death: roles and regulation in angiosperms.

Doll N, Nowack M J Exp Bot. 2024; 75(14):4346-4359.

PMID: 38364847 PMC: 7616292. DOI: 10.1093/jxb/erae052.


References
1.
Rolletschek H, Koch K, Wobus U, Borisjuk L . Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo. Plant J. 2005; 42(1):69-83. DOI: 10.1111/j.1365-313X.2005.02352.x. View

2.
Sanclemente M, Ma F, Liu P, Della Porta A, Singh J, Wu S . Sugar modulation of anaerobic-response networks in maize root tips. Plant Physiol. 2021; 185(2):295-317. PMC: 8133576. DOI: 10.1093/plphys/kiaa029. View

3.
Li L, Du Y, He C, Dietrich C, Li J, Ma X . Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J Exp Bot. 2019; 70(12):3089-3099. PMC: 6598097. DOI: 10.1093/jxb/erz131. View

4.
Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A . Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. Plant Sci. 2019; 281:133-145. DOI: 10.1016/j.plantsci.2019.01.027. View

5.
Weits D, Giuntoli B, Kosmacz M, Parlanti S, Hubberten H, Riegler H . Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun. 2014; 5:3425. PMC: 3959200. DOI: 10.1038/ncomms4425. View