» Articles » PMID: 36686749

A Pan-cancer Landscape of IGF2BPs and Their Association with Prognosis, Stemness and Tumor Immune Microenvironment

Overview
Journal Front Oncol
Specialty Oncology
Date 2023 Jan 23
PMID 36686749
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The human insulin-like growth factor 2 mRNA binding proteins 1-3 (IGF2BP1-3, also called IMP1-3) play essential roles in mRNA regulation, including its splicing, translocation, stability, and translation. However, knowledge regarding the involvement of IGF2BPs in tumor immunity and stemness across cancer types is still lacking.

Methods: In this study, we comprehensively analyzed pan-cancer multi-omic data to determine the correlation of IGF2BPs mRNA and protein expression with various cancer parameters such as mutation frequency, prognostic value, the tumor microenvironment (TME), checkpoint blockade, tumor immune infiltration, stemness and drug sensitivity. Validation of the expression of IGF2BPs in cancer samples and glioma cells were performed by quantitative real-time (qRT)-PCR, and immunofluorescence staining. Investigation of the functional role of IGF2BP3 in glioma stem cells(GSCs) were performed by sphere formation, cytotoxicity, transwell, and wound healing assays.

Results: We found that IGF2BP1 and 3 are either absent or expressed at very low levels in most normal tissues. However, IGF2BP1-3 can be re-expressed in a broad range of cancer types and diverse cancer cell lines, where their expression often correlates with poor prognosis. Immunofluorescence staining and qRT-PCR analyses also showed that the expression of IGF2BP2 and IGF2BP3 were higher in cancer tissues than that in adjacent normal tissues. Moreover, IGF2BPs are associated with TME and stemness in human pan-cancer. Remarkably, IGF2BP3 participated in the maintenance and self-renewal of glioma stem cell (GSCs). Knockdown of IGF2BP3 attenuated GSC and glioma cell proliferation, invasion, and migration.

Conclusions: Our systematic pan-cancer study confirmed the identification of IGF2BPs as therapeutic targets and highlighted the need to study their association with stemness, and the TME, which contribute to the cancer drug-discovery research. Especially, preliminary studies demonstrate the IGF2BP3 as a potential negative regulator of glioma tumorigenesis by modulating stemness.

Citing Articles

A pan-cancer analysis reveals the oncogenic and immunological role of insulin-like growth factor 2 mRNA-binding protein family members.

Zeng F, Chen L, Li J, Yu W, Sa N, Zhang K Discov Oncol. 2025; 16(1):323.

PMID: 40088376 DOI: 10.1007/s12672-025-02077-2.


The Emerging Role of IGF2BP2 in Cancer Therapy Resistance: From Molecular Mechanism to Future Potential.

Li D, Hu S, Ye J, Zhai C, Liu J, Wang Z Int J Mol Sci. 2024; 25(22).

PMID: 39596216 PMC: 11595103. DOI: 10.3390/ijms252212150.


The RNA-binding protein IGF2BP1 regulates stability of mRNA transcribed from FOXM1 target genes in hypermitotic meningiomas.

Leclair N, Lucas C, Mirchia K, McCortney K, Horbinski C, Raleigh D Acta Neuropathol. 2024; 148(1):28.

PMID: 39179895 PMC: 11343784. DOI: 10.1007/s00401-024-02788-w.


Systematic analysis of IGF2BP family members in non-small-cell lung cancer.

Gong L, Liu Q, Jia M, Sun X Hum Genomics. 2024; 18(1):63.

PMID: 38867248 PMC: 11167947. DOI: 10.1186/s40246-024-00632-6.


Three Liquid-Liquid Phase Separation-Related Genes Associated with Prognosis in Glioma.

Lv L, Zhang X, Liu Y, Zhu X, Pan R, Huang L Pharmgenomics Pers Med. 2024; 17:171-181.

PMID: 38681062 PMC: 11048218. DOI: 10.2147/PGPM.S442000.


References
1.
Inoue A, Nukiwa T . Gene mutations in lung cancer: promising predictive factors for the success of molecular therapy. PLoS Med. 2005; 2(1):e13. PMC: 545205. DOI: 10.1371/journal.pmed.0020013. View

2.
Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q . EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022; 21(1):16. PMC: 8759291. DOI: 10.1186/s12943-021-01485-6. View

3.
Xu W, Sheng Y, Guo Y, Huang Z, Huang Y, Wen D . Increased IGF2BP3 expression promotes the aggressive phenotypes of colorectal cancer cells in vitro and vivo. J Cell Physiol. 2019; 234(10):18466-18479. DOI: 10.1002/jcp.28483. View

4.
Qin S, Xia Y, Miao Y, Zhu H, Wu J, Fan L . MYD88 mutations predict unfavorable prognosis in Chronic Lymphocytic Leukemia patients with mutated IGHV gene. Blood Cancer J. 2017; 7(12):651. PMC: 5802429. DOI: 10.1038/s41408-017-0014-y. View

5.
Yang Y, Meng W, Wang Z . Cancer Stem Cells and the Tumor Microenvironment in Gastric Cancer. Front Oncol. 2022; 11:803974. PMC: 8761735. DOI: 10.3389/fonc.2021.803974. View