» Articles » PMID: 36683072

Rapid Prototyping for High-pressure Microfluidics

Overview
Journal Sci Rep
Specialty Science
Date 2023 Jan 22
PMID 36683072
Authors
Affiliations
Soon will be listed here.
Abstract

Soft lithography has permitted rapid prototyping of precise microfluidic features by patterning a deformable elastomer such as polydimethylsiloxane (PDMS) with a photolithographically patterned mold. In microfluidics applications where the flexibility of PDMS is a drawback, a variety of more rigid materials have been proposed. Compared to alternatives, devices fabricated from epoxy and glass have superior mechanical performance, feature resolution, and solvent compatibility. Here we provide a detailed step-by-step method for fabricating rigid microfluidic devices from soft lithography patterned epoxy and glass. The bonding protocol was optimized yielding devices that withstand pressures exceeding 500 psi. Using this method, we demonstrate the use of rigid high aspect ratio spiral microchannels for high throughput cell focusing.

Citing Articles

Microfluidic biosensors for biomarker detection in body fluids: a key approach for early cancer diagnosis.

Liu Z, Zhou Y, Lu J, Gong T, Ibanez E, Cifuentes A Biomark Res. 2024; 12(1):153.

PMID: 39639411 PMC: 11622463. DOI: 10.1186/s40364-024-00697-4.


Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview.

Alexandre-Franco M, Kouider R, Kassir Al-Karany R, Cuerda-Correa E, Al-Kassir A Micromachines (Basel). 2024; 15(9).

PMID: 39337797 PMC: 11433824. DOI: 10.3390/mi15091137.


Three-Dimensionally Printed Microsystems to Facilitate Flow-Based Study of Cells from Neurovascular Barriers of the Retina.

Leverant A, Oprysk L, Dabrowski A, Kyker-Snowman K, Vazquez M Micromachines (Basel). 2024; 15(9).

PMID: 39337763 PMC: 11434203. DOI: 10.3390/mi15091103.


Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules.

Vladisaljevic G Micromachines (Basel). 2024; 15(8).

PMID: 39203623 PMC: 11356158. DOI: 10.3390/mi15080971.


Label-Free Microfluidic Apheresis of Circulating Tumor Cell Clusters.

Zhan L, Edd J, Mishra A, Toner M Adv Sci (Weinh). 2024; 11(40):e2405853.

PMID: 39199012 PMC: 11515904. DOI: 10.1002/advs.202405853.


References
1.
Sollier E, Murray C, Maoddi P, Di Carlo D . Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip. 2011; 11(22):3752-65. DOI: 10.1039/c1lc20514e. View

2.
Kumar T, Ramachandraiah H, Narayana Iyengar S, Banerjee I, Martensson G, Russom A . High throughput viscoelastic particle focusing and separation in spiral microchannels. Sci Rep. 2021; 11(1):8467. PMC: 8055915. DOI: 10.1038/s41598-021-88047-4. View

3.
Fiorini G, Yim M, Jeffries G, Schiro P, Mutch S, Lorenz R . Fabrication improvements for thermoset polyester (TPE) microfluidic devices. Lab Chip. 2007; 7(7):923-6. DOI: 10.1039/b702548c. View

4.
McDonald J, Whitesides G . Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res. 2002; 35(7):491-9. DOI: 10.1021/ar010110q. View

5.
Lim E, Ober T, Edd J, Desai S, Neal D, Bong K . Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat Commun. 2014; 5:4120. PMC: 4476514. DOI: 10.1038/ncomms5120. View