» Articles » PMID: 36680595

COG2 Negatively Regulates Chilling Tolerance Through Cell Wall Components Altered in Rice

Overview
Publisher Springer
Specialty Genetics
Date 2023 Jan 21
PMID 36680595
Authors
Affiliations
Soon will be listed here.
Abstract

Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.

Citing Articles

Natural variation of indels in the CTB3 promoter confers cold tolerance in japonica rice.

Li J, Guo H, Lou Q, Zeng Y, Guo Z, Xu P Nat Commun. 2025; 16(1):1613.

PMID: 39948084 PMC: 11825672. DOI: 10.1038/s41467-025-56992-7.


Identification of the Cold-Related Genes COLD11 and OsCTS11 via BSA-seq and Fine Mapping at the Rice Seedling Stage.

Wu B, Fu M, Du J, Wang M, Zhang S, Li S Rice (N Y). 2024; 17(1):72.

PMID: 39576378 PMC: 11584825. DOI: 10.1186/s12284-024-00749-1.


Haplotype-resolved genome and mapping of freezing tolerance in the wild potato .

Dong J, Li J, Zuo Y, Wang J, Chen Y, Tu W Hortic Res. 2024; 11(9):uhae181.

PMID: 39247882 PMC: 11374536. DOI: 10.1093/hr/uhae181.


Identification of candidate genes controlling cold tolerance at the early seedling stage from Dongxiang wild rice by QTL mapping, BSA-Seq and RNA-Seq.

Zhou S, Wu T, Li X, Wang S, Hu B BMC Plant Biol. 2024; 24(1):649.

PMID: 38977989 PMC: 11232298. DOI: 10.1186/s12870-024-05369-x.


OsVPE2, a Member of Vacuolar Processing Enzyme Family, Decreases Chilling Tolerance of Rice.

Deng H, Cao S, Zhang G, Xiao Y, Liu X, Wang F Rice (N Y). 2024; 17(1):5.

PMID: 38194166 PMC: 10776553. DOI: 10.1186/s12284-023-00682-9.

References
1.
Bethke G, Thao A, Xiong G, Li B, Soltis N, Hatsugai N . Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana. Plant Cell. 2016; 28(2):537-56. PMC: 4790862. DOI: 10.1105/tpc.15.00404. View

2.
BLUMENKRANTZ N, ASBOE-HANSEN G . New method for quantitative determination of uronic acids. Anal Biochem. 1973; 54(2):484-9. DOI: 10.1016/0003-2697(73)90377-1. View

3.
Borassi C, Sede A, Mecchia M, Salgado Salter J, Marzol E, Muschietti J . An update on cell surface proteins containing extensin-motifs. J Exp Bot. 2015; 67(2):477-87. DOI: 10.1093/jxb/erv455. View

4.
Cannon M, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart B . Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci U S A. 2008; 105(6):2226-31. PMC: 2538902. DOI: 10.1073/pnas.0711980105. View

5.
Castilleux R, Plancot B, Vicre M, Nguema-Ona E, Driouich A . Extensin, an underestimated key component of cell wall defence?. Ann Bot. 2021; 127(6):709-713. PMC: 8103801. DOI: 10.1093/aob/mcab001. View