» Articles » PMID: 36673156

Chaos and Thermalization in the Spin-Boson Dicke Model

Overview
Journal Entropy (Basel)
Publisher MDPI
Date 2023 Jan 21
PMID 36673156
Authors
Affiliations
Soon will be listed here.
Abstract

We present a detailed analysis of the connection between chaos and the onset of thermalization in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of freedom, and it presents both regular and chaotic regions. Our studies of the eigenstate expectation values and the distributions of the off-diagonal elements of the number of photons and the number of excited atoms validate the diagonal and off-diagonal eigenstate thermalization hypothesis (ETH) in the chaotic region, thus ensuring thermalization. The validity of the ETH reflects the chaotic structure of the eigenstates, which we corroborate using the von Neumann entanglement entropy and the Shannon entropy. Our results for the Shannon entropy also make evident the advantages of the so-called "efficient basis" over the widespread employed Fock basis when investigating the unbounded spectrum of the Dicke model. The efficient basis gives us access to a larger number of converged states than what can be reached with the Fock basis.

Citing Articles

Phase and Amplitude Modes in the Anisotropic Dicke Model with Matter Interactions.

Herrera Romero R, Bastarrachea-Magnani M Entropy (Basel). 2024; 26(7).

PMID: 39056936 PMC: 11276390. DOI: 10.3390/e26070574.


Quantum Phase Transitions in a Generalized Dicke Model.

Liu W, Duan L Entropy (Basel). 2023; 25(11).

PMID: 37998185 PMC: 10670583. DOI: 10.3390/e25111492.

References
1.
Goldstein S, Lebowitz J, Mastrodonato C, Tumulka R, Zanghi N . Approach to thermal equilibrium of macroscopic quantum systems. Phys Rev E Stat Nonlin Soft Matter Phys. 2010; 81(1 Pt 1):011109. DOI: 10.1103/PhysRevE.81.011109. View

2.
Wang J, Wang W . Characterization of random features of chaotic eigenfunctions in unperturbed basis. Phys Rev E. 2018; 97(6-1):062219. DOI: 10.1103/PhysRevE.97.062219. View

3.
de Oliveira FA , Kim , Knight , Buek V . Properties of displaced number states. Phys Rev A. 1990; 41(5):2645-2652. DOI: 10.1103/physreva.41.2645. View

4.
Beugeling W, Moessner R, Haque M . Off-diagonal matrix elements of local operators in many-body quantum systems. Phys Rev E Stat Nonlin Soft Matter Phys. 2015; 91(1):012144. DOI: 10.1103/PhysRevE.91.012144. View

5.
Chavez-Carlos J, Lopez-Del-Carpio B, Bastarrachea-Magnani M, Stransky P, Lerma-Hernandez S, Santos L . Quantum and Classical Lyapunov Exponents in Atom-Field Interaction Systems. Phys Rev Lett. 2019; 122(2):024101. DOI: 10.1103/PhysRevLett.122.024101. View