» Articles » PMID: 36672506

Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2023 Jan 21
PMID 36672506
Authors
Affiliations
Soon will be listed here.
Abstract

The qualitative and quantitative evaluation of proteome changes that condition cancer development can be achieved with liquid chromatography-mass spectrometry (LC-MS). LC-MS-based proteomics strategies are carried out according to predesigned workflows that comprise several steps such as sample selection, sample processing including labeling, MS acquisition methods, statistical treatment, and bioinformatics to understand the biological meaning of the findings and set predictive classifiers. As the choice of best options might not be straightforward, we herein review and assess past and current proteomics approaches for the discovery of new cancer biomarkers. Moreover, we review major bioinformatics tools for interpreting and visualizing proteomics results and suggest the most popular machine learning techniques for the selection of predictive biomarkers. Finally, we consider the approximation of proteomics strategies for clinical diagnosis and prognosis by discussing current barriers and proposals to circumvent them.

Citing Articles

Proteomic insights into molecular alterations associated with Kawasaki disease in children.

Wang C, Yu W, Wu X, Wang S, Chen L, Liu G Ital J Pediatr. 2025; 51(1):56.

PMID: 39984993 PMC: 11846444. DOI: 10.1186/s13052-025-01853-8.


An integrated multi-omics approach allowed ultra-rapid diagnosis of a deep intronic pathogenic variant in PDHX and precision treatment in a neonate critically ill with lactic acidosis.

Starosta R, Larson A, Meeks N, Gracie S, Friederich M, Gaughan S Mitochondrion. 2024; 79:101973.

PMID: 39413893 PMC: 11578067. DOI: 10.1016/j.mito.2024.101973.


Proteomics Studies on Extracellular Vesicles Derived from Glioblastoma: Where Do We Stand?.

Giuliani P, De Simone C, Febo G, Bellasame A, Tupone N, Di Virglio V Int J Mol Sci. 2024; 25(18).

PMID: 39337267 PMC: 11431518. DOI: 10.3390/ijms25189778.


The Deep Proteomics Approach Identified Extracellular Vesicular Proteins Correlated to Extracellular Matrix in Type One and Two Endometrial Cancer.

Capaci V, Kharrat F, Conti A, Salviati E, Basilicata M, Campiglia P Int J Mol Sci. 2024; 25(9).

PMID: 38731868 PMC: 11083465. DOI: 10.3390/ijms25094650.


Serum/Plasma Proteome in Non-Malignant Liver Disease.

Fu L, Guldiken N, Remih K, Karl A, Preisinger C, Strnad P Int J Mol Sci. 2024; 25(4).

PMID: 38396688 PMC: 10889128. DOI: 10.3390/ijms25042008.


References
1.
Kim M, Eetemadi A, Tagkopoulos I . DeepPep: Deep proteome inference from peptide profiles. PLoS Comput Biol. 2017; 13(9):e1005661. PMC: 5600403. DOI: 10.1371/journal.pcbi.1005661. View

2.
Kong A, Leprevost F, Avtonomov D, Mellacheruvu D, Nesvizhskii A . MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017; 14(5):513-520. PMC: 5409104. DOI: 10.1038/nmeth.4256. View

3.
Manza L, Stamer S, Ham A, Codreanu S, Liebler D . Sample preparation and digestion for proteomic analyses using spin filters. Proteomics. 2005; 5(7):1742-5. DOI: 10.1002/pmic.200401063. View

4.
Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T . Proteomic maps of breast cancer subtypes. Nat Commun. 2016; 7:10259. PMC: 4725767. DOI: 10.1038/ncomms10259. View

5.
Panizza E, Branca R, Oliviusson P, Orre L, Lehtio J . Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome. Sci Rep. 2017; 7(1):4513. PMC: 5495806. DOI: 10.1038/s41598-017-04798-z. View