6.
Nugent P, Potchinsky M, Lafferty C, Greene R
. TGF-beta modulates the expression of retinoic acid-induced RAR-beta in primary cultures of embryonic palate cells. Exp Cell Res. 1995; 220(2):495-500.
DOI: 10.1006/excr.1995.1341.
View
7.
Cai A, Radtke K, Linville A, Lander A, Nie Q, Schilling T
. Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development. 2012; 139(12):2150-5.
PMC: 3357909.
DOI: 10.1242/dev.077065.
View
8.
Ladher R, ONeill P, Begbie J
. From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development. 2010; 137(11):1777-85.
DOI: 10.1242/dev.040055.
View
9.
KELLEY M, Xu X, WAGNER M, Warchol M, Corwin J
. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development. 1993; 119(4):1041-53.
DOI: 10.1242/dev.119.4.1041.
View
10.
Haskell G, Maynard T, Shatzmiller R, LaMantia A
. Retinoic acid signaling at sites of plasticity in the mature central nervous system. J Comp Neurol. 2002; 452(3):228-41.
DOI: 10.1002/cne.10369.
View
11.
Choo D, Sanne J, Wu D
. The differential sensitivities of inner ear structures to retinoic acid during development. Dev Biol. 1998; 204(1):136-50.
DOI: 10.1006/dbio.1998.9095.
View
12.
de Bruijn D, Oerlemans F, Hendriks W, Baats E, Ploemacher R, Wieringa B
. Normal development, growth and reproduction in cellular retinoic acid binding protein-I (CRABPI) null mutant mice. Differentiation. 1994; 58(2):141-8.
DOI: 10.1046/j.1432-0436.1995.5820141.x.
View
13.
Satoh T, Fekete D
. Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development. 2005; 132(7):1687-97.
DOI: 10.1242/dev.01730.
View
14.
Sanchez-Calderon H, Martin-Partido G, Hidalgo-Sanchez M
. Otx2, Gbx2, and Fgf8 expression patterns in the chick developing inner ear and their possible roles in otic specification and early innervation. Gene Expr Patterns. 2004; 4(6):659-69.
DOI: 10.1016/j.modgep.2004.04.008.
View
15.
Bushue N, Wan Y
. Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev. 2010; 62(13):1285-98.
PMC: 2991380.
DOI: 10.1016/j.addr.2010.07.003.
View
16.
Deak K, Dickerson M, Linney E, Enterline D, George T, Melvin E
. Analysis of ALDH1A2, CYP26A1, CYP26B1, CRABP1, and CRABP2 in human neural tube defects suggests a possible association with alleles in ALDH1A2. Birth Defects Res A Clin Mol Teratol. 2005; 73(11):868-75.
DOI: 10.1002/bdra.20183.
View
17.
Mey J, McCaffery P, Klemeit M
. Sources and sink of retinoic acid in the embryonic chick retina: distribution of aldehyde dehydrogenase activities, CRABP-I, and sites of retinoic acid inactivation. Brain Res Dev Brain Res. 2001; 127(2):135-48.
DOI: 10.1016/s0165-3806(01)00127-4.
View
18.
Fawcett D, Pasceri P, Fraser R, Colbert M, Rossant J, Giguere V
. Postaxial polydactyly in forelimbs of CRABP-II mutant mice. Development. 1995; 121(3):671-9.
DOI: 10.1242/dev.121.3.671.
View
19.
Braunstein E, Monks D, Aggarwal V, Arnold J, Morrow B
. Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis. BMC Dev Biol. 2009; 9:31.
PMC: 2700094.
DOI: 10.1186/1471-213X-9-31.
View
20.
Tanaka M
. Developmental Mechanism of Limb Field Specification along the Anterior-Posterior Axis during Vertebrate Evolution. J Dev Biol. 2018; 4(2).
PMC: 5831784.
DOI: 10.3390/jdb4020018.
View