» Articles » PMID: 36660368

Zero-Gap Electrochemical CO Reduction Cells: Challenges and Operational Strategies for Prevention of Salt Precipitation

Overview
Journal ACS Energy Lett
Date 2023 Jan 20
PMID 36660368
Authors
Affiliations
Soon will be listed here.
Abstract

Salt precipitation is a problem in electrochemical CO reduction electrolyzers that limits their long-term durability and industrial applicability by reducing the active area, causing flooding and hindering gas transport. Salt crystals form when hydroxide generation from electrochemical reactions interacts homogeneously with CO to generate substantial quantities of carbonate. In the presence of sufficient electrolyte cations, the solubility limits of these species are reached, resulting in "salting out" conditions in cathode compartments. Detrimental salt precipitation is regularly observed in zero-gap membrane electrode assemblies, especially when operated at high current densities. This Perspective briefly discusses the mechanisms for salt formation, and recently reported strategies for preventing or reversing salt formation in zero-gap CO reduction membrane electrode assemblies. We link these approaches to the solubility limit of potassium carbonate within the electrolyzer and describe how each strategy separately manipulates water, potassium, and carbonate concentrations to prevent (or mitigate) salt formation.

Citing Articles

Solid-State-Electrolyte Reactor: New Opportunity for Electrifying Manufacture.

Liu C, Ji Y, Zheng T, Xia C JACS Au. 2025; 5(2):521-535.

PMID: 40017735 PMC: 11862930. DOI: 10.1021/jacsau.4c01183.


The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations.

Jang H, Gardner A, Walters L, Neale A, Hardwick L, Cowan A ACS Electrochem. 2025; 1(1):20-24.

PMID: 39878147 PMC: 11728718. DOI: 10.1021/acselectrochem.4c00040.


Heating dictates the scalability of CO electrolyzer types.

Hurkmans J, Pelzer H, Burdyny T, Peeters J, Vermaas D EES Catal. 2025; 3(2):305-317.

PMID: 39802814 PMC: 11721209. DOI: 10.1039/d4ey00190g.


Macro- and Nano-Porous Ag Electrodes Enable Selective and Stable Aqueous CO Reduction.

Nourmohammadi Khiarak B, da Silva G, Grange V, Gao G, Golovanova V, de Garcia de Arquer F Small. 2024; 21(8):e2409669.

PMID: 39716859 PMC: 11855228. DOI: 10.1002/smll.202409669.


Substituent tuning of Cu coordination polymers enables carbon-efficient CO electroreduction to multi-carbon products.

Deng H, Liu T, Zhao W, Wang J, Zhang Y, Zhang S Nat Commun. 2024; 15(1):9706.

PMID: 39521774 PMC: 11550470. DOI: 10.1038/s41467-024-54107-2.


References
1.
Wuttig A, Yoon Y, Ryu J, Surendranath Y . Bicarbonate Is Not a General Acid in Au-Catalyzed CO Electroreduction. J Am Chem Soc. 2017; 139(47):17109-17113. DOI: 10.1021/jacs.7b08345. View

2.
Leonard M, Clarke L, Forner-Cuenca A, Brown S, Brushett F . Investigating Electrode Flooding in a Flowing Electrolyte, Gas-Fed Carbon Dioxide Electrolyzer. ChemSusChem. 2019; 13(2):400-411. DOI: 10.1002/cssc.201902547. View

3.
Bui J, Digdaya I, Xiang C, Bell A, Weber A . Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes. ACS Appl Mater Interfaces. 2020; 12(47):52509-52526. DOI: 10.1021/acsami.0c12686. View

4.
Yang K, Kas R, Smith W . In Situ Infrared Spectroscopy Reveals Persistent Alkalinity near Electrode Surfaces during CO Electroreduction. J Am Chem Soc. 2019; 141(40):15891-15900. PMC: 6788196. DOI: 10.1021/jacs.9b07000. View

5.
Huang J, Li F, Ozden A, Rasouli A, Garcia de Arquer F, Liu S . CO electrolysis to multicarbon products in strong acid. Science. 2021; 372(6546):1074-1078. DOI: 10.1126/science.abg6582. View