6.
Cleary I, Mulabagal P, Reinhard S, Yadev N, Murdoch C, Thornhill M
. Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans. Eukaryot Cell. 2010; 9(9):1363-73.
PMC: 2937334.
DOI: 10.1128/EC.00088-10.
View
7.
Cleary I, Reinhard S, Lazzell A, Monteagudo C, Thomas D, Lopez-Ribot J
. Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis. FEMS Yeast Res. 2016; 16(2):fow011.
PMC: 5006252.
DOI: 10.1093/femsyr/fow011.
View
8.
Du H, Guan G, Xie J, Sun Y, Tong Y, Zhang L
. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLoS One. 2012; 7(1):e29707.
PMC: 3261855.
DOI: 10.1371/journal.pone.0029707.
View
9.
Huang M, Woolford C, May G, McManus C, Mitchell A
. Circuit diversification in a biofilm regulatory network. PLoS Pathog. 2019; 15(5):e1007787.
PMC: 6530872.
DOI: 10.1371/journal.ppat.1007787.
View
10.
Kadosh D, Johnson A
. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol. 2001; 21(7):2496-505.
PMC: 86882.
DOI: 10.1128/MCB.21.7.2496-2505.2001.
View
11.
Khalaf R, Zitomer R
. The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics. 2001; 157(4):1503-12.
PMC: 1461606.
DOI: 10.1093/genetics/157.4.1503.
View
12.
Kohler G, White T, Agabian N
. Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol. 1997; 179(7):2331-8.
PMC: 178971.
DOI: 10.1128/jb.179.7.2331-2338.1997.
View
13.
Lu Y, Su C, Liu H
. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog. 2012; 8(4):e1002663.
PMC: 3334898.
DOI: 10.1371/journal.ppat.1002663.
View
14.
Murad A, LEE P, Broadbent I, Barelle C, Brown A
. CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast. 2000; 16(4):325-7.
DOI: 10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#.
View
15.
Murad A, Leng P, Straffon M, Wishart J, MacAskill S, MACCALLUM D
. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 2001; 20(17):4742-52.
PMC: 125592.
DOI: 10.1093/emboj/20.17.4742.
View
16.
Nakayama H, Mio T, Nagahashi S, Kokado M, Arisawa M, Aoki Y
. Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect Immun. 2000; 68(12):6712-9.
PMC: 97771.
DOI: 10.1128/IAI.68.12.6712-6719.2000.
View
17.
Nobile C, Fox E, Nett J, Sorrells T, Mitrovich Q, Hernday A
. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012; 148(1-2):126-38.
PMC: 3266547.
DOI: 10.1016/j.cell.2011.10.048.
View
18.
Reuss O, Vik A, Kolter R, Morschhauser J
. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004; 341:119-27.
DOI: 10.1016/j.gene.2004.06.021.
View
19.
Sudbery P
. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011; 9(10):737-48.
DOI: 10.1038/nrmicro2636.
View
20.
Wightman R, Bates S, Amornrrattanapan P, Sudbery P
. In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Biol. 2004; 164(4):581-91.
PMC: 2171991.
DOI: 10.1083/jcb.200307176.
View