6.
Malyan S, Bhatia A, Kumar A, Gupta D, Singh R, Kumar S
. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ. 2016; 572:874-896.
DOI: 10.1016/j.scitotenv.2016.07.182.
View
7.
Wu X, Friedrich M, Conrad R
. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environ Microbiol. 2006; 8(3):394-404.
DOI: 10.1111/j.1462-2920.2005.00904.x.
View
8.
Arrigo K
. Sea ice ecosystems. Ann Rev Mar Sci. 2013; 6:439-67.
DOI: 10.1146/annurev-marine-010213-135103.
View
9.
Ho A, Kerckhof F, Luke C, Reim A, Krause S, Boon N
. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep. 2013; 5(3):335-45.
DOI: 10.1111/j.1758-2229.2012.00370.x.
View
10.
Yuan Y, Conrad R, Lu Y
. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil. Environ Microbiol Rep. 2013; 3(3):320-8.
DOI: 10.1111/j.1758-2229.2010.00228.x.
View
11.
Liu D, Wang H, An S, Bhople P, Davlatbekov F
. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Sci Total Environ. 2019; 660:1058-1069.
DOI: 10.1016/j.scitotenv.2019.01.097.
View
12.
Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand J
. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci U S A. 2014; 111(9):E836-45.
PMC: 3948316.
DOI: 10.1073/pnas.1324044111.
View
13.
Nichols C, Guezennec J, Bowman J
. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol (NY). 2005; 7(4):253-71.
DOI: 10.1007/s10126-004-5118-2.
View
14.
Wang S, Ma L, Xu Y, Wang Y, Zhu N, Liu J
. The unexpected concentration-dependent response of periphytic biofilm during indole acetic acid removal. Bioresour Technol. 2020; 303:122922.
DOI: 10.1016/j.biortech.2020.122922.
View
15.
Wu Y, Liu J, Lu H, Wu C, Kerr P
. Periphyton: an important regulator in optimizing soil phosphorus bioavailability in paddy fields. Environ Sci Pollut Res Int. 2016; 23(21):21377-21384.
DOI: 10.1007/s11356-016-7363-0.
View
16.
Bai R, Wang J, Deng Y, He J, Feng K, Zhang L
. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers. Front Microbiol. 2017; 8:945.
PMC: 5447084.
DOI: 10.3389/fmicb.2017.00945.
View
17.
Kenney G, Sadek M, Rosenzweig A
. Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics. 2016; 8(9):931-40.
PMC: 6195801.
DOI: 10.1039/c5mt00289c.
View
18.
Alpana S, Vishwakarma P, Adhya T, Inubushi K, Dubey S
. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem. Sci Total Environ. 2017; 596-597:136-146.
DOI: 10.1016/j.scitotenv.2017.04.011.
View
19.
Wang S, Sun P, Zhang G, Gray N, Dolfing J, Esquivel-Elizondo S
. Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. Innovation (Camb). 2021; 3(1):100192.
PMC: 8672048.
DOI: 10.1016/j.xinn.2021.100192.
View
20.
Thauer R, Kaster A, Seedorf H, Buckel W, Hedderich R
. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008; 6(8):579-91.
DOI: 10.1038/nrmicro1931.
View