» Articles » PMID: 36611440

Immunological Aspects of Von Hippel-Lindau Disease: A Focus on Neuro-Oncology and Myasthenia Gravis

Abstract

Von Hippel-Lindau (VHL) disease is an autosomal dominant condition that predisposes affected individuals to a variety of malignant and benign neoplasms. The pathogenetic turning point of this illness is the accumulation of hypoxia-inducible factor (HIF)-1α, a transcription factor of several genes involved in oncogenesis, angiogenesis, tissue regeneration, metabolic regulation, hematopoiesis, and inflammatory responses. From an oncological perspective, increased awareness of the molecular pathways underlying this disease is bringing us closer to the development of specific and targeted therapies. Meanwhile, on the surgical side, improved understanding can help to better identify the patients to be treated and the surgical timing. Overall, pathogenesis research is crucial for developing patient-tailored therapies. One of the actual key topics of interest is the link between the VHL/HIF axis and inflammation. The present study aims to outline the fundamental mechanisms that link VHL disease and immune disorders, as well as to explore the details of the overlap between VHL disease and myasthenia gravis (MG) pathogenetic pathways. As a result, MG becomes a paradigm for autoimmune disorders that might be related with VHL disease.

Citing Articles

Thymic gene expression analysis reveals a potential link between HIF-1A and Th17/Treg imbalance in thymoma associated myasthenia gravis.

Altinonder I, Kaya M, Yentur S, Cakar A, Durmus H, Yegen G J Neuroinflammation. 2024; 21(1):126.

PMID: 38734662 PMC: 11088784. DOI: 10.1186/s12974-024-03095-7.


Dysregulated lipid metabolism networks modulate T-cell function in people with relapsing-remitting multiple sclerosis.

Martin-Gutierrez L, Waddington K, Maggio A, Coelewij L, Oppong A, Yang N Clin Exp Immunol. 2024; 217(2):204-218.

PMID: 38625017 PMC: 11239565. DOI: 10.1093/cei/uxae032.


When rare diseases crisscross within the same patient: von Hippel-Lindau and type 1 gastric neuroendocrine tumor.

Alexandraki K, Spyroglou A, Xekouki P, Bramis K, Kyriakopoulos G, Barkas K Hormones (Athens). 2024; 23(3):585-590.

PMID: 38619811 PMC: 11436398. DOI: 10.1007/s42000-024-00556-9.


Transient Neonatal Myasthenia Gravis Born to a Mother with Asymptomatic MG: A Case Report.

Yang J, Pan L, Liu Y, Wang Y Degener Neurol Neuromuscul Dis. 2024; 14:15-19.

PMID: 38444566 PMC: 10913793. DOI: 10.2147/DNND.S451611.


Stereotypic T cell receptor clonotypes in the thymus and peripheral blood of Myasthenia gravis patients.

Lee Y, Kim S, Lee E, Shin H, Kim M, Lee C Heliyon. 2024; 10(4):e26663.

PMID: 38420468 PMC: 10901099. DOI: 10.1016/j.heliyon.2024.e26663.


References
1.
Evans D, Howard E, Giblin C, Clancy T, Spencer H, Huson S . Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A. 2010; 152A(2):327-32. DOI: 10.1002/ajmg.a.33139. View

2.
Jonasch E, Donskov F, Iliopoulos O, Rathmell W, Narayan V, Maughan B . Belzutifan for Renal Cell Carcinoma in von Hippel-Lindau Disease. N Engl J Med. 2021; 385(22):2036-2046. PMC: 9275515. DOI: 10.1056/NEJMoa2103425. View

3.
Schaffert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A . IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol. 2015; 45(5):1339-47. DOI: 10.1002/eji.201445064. View

4.
OConnor Jr W, Zenewicz L, Flavell R . The dual nature of T(H)17 cells: shifting the focus to function. Nat Immunol. 2010; 11(6):471-6. DOI: 10.1038/ni.1882. View

5.
Li Q, Li D, Zhang X, Wan Q, Zhang W, Zheng M . E3 Ligase VHL Promotes Group 2 Innate Lymphoid Cell Maturation and Function via Glycolysis Inhibition and Induction of Interleukin-33 Receptor. Immunity. 2018; 48(2):258-270.e5. PMC: 5828523. DOI: 10.1016/j.immuni.2017.12.013. View