» Articles » PMID: 36602702

Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats

Overview
Journal Mol Neurobiol
Date 2023 Jan 5
PMID 36602702
Authors
Affiliations
Soon will be listed here.
Abstract

Central post-stroke pain (CPSP) is a highly refractory form of central neuropathic pain that has been poorly studied mechanistically. Recent observations have emphasized the critical role of the spinal dorsal horn in CPSP. However, the underlying mechanisms remain unclear. In this study, rats were subjected to thalamic hemorrhage to investigate the role of spinal monocyte chemoattractant protein-1 (MCP-1) and C-C motif chemokine receptor 2 (CCR2) in the development of CPSP. Immunohistochemical staining and ELISA were used to assess the expression changes of c-Fos, Iba-1, GFAP, MCP-1, and CCR2 in the dorsal horn of the lumbar spinal cord following thalamic hemorrhage, and the involvement of spinal MCP-1 in CPSP was examined by performing intrathecal anti-MCP-1 mAb injection to neutralize the spinal extracellular MCP-1. We demonstrated that intra-thalamic collagenase microinjection induced persistent bilateral mechanical pain hypersensitivity and facilitated the spontaneous pain behaviors evoked by intraplantar bee venom injection. Accompanying CPSP, the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn was significantly increased up to 28 days post-intra-thalamic collagenase microinjection. Intrathecal injection of minocycline and fluorocitrate dramatically reverses the bilateral mechanical pain hypersensitivity. Moreover, intra-thalamic collagenase microinjection dramatically induced the up-regulation of MCP-1 but had no effect on the expression of CCR2 in the bilateral lumbar spinal dorsal horn, and MCP-1 was primarily localized in the neuron. Intrathecal injection of anti-MCP-1 mAb was also able to reverse CPSP and reduce the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn. These findings indicated that spinal MCP-1 contributes to CPSP by mediating the activation of spinal neurons and glial cells following thalamic hemorrhage stroke, which may provide insights into pharmacologic treatment for CPSP.

Citing Articles

Progress of research into microglial mediation of central post-stroke pain.

Li Y, Dang Z, Li S, Li G, Cai H, Lu Y Int J Immunopathol Pharmacol. 2024; 38:3946320241309220.

PMID: 39699048 PMC: 11660280. DOI: 10.1177/03946320241309220.


The P2X7 Hypothesis of Central Post-Stroke Pain.

Huang A, Shih H, Shyu B Int J Mol Sci. 2024; 25(12).

PMID: 38928280 PMC: 11204365. DOI: 10.3390/ijms25126577.


CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings.

Ciechanowska A, Mika J Int J Mol Sci. 2024; 25(7).

PMID: 38612597 PMC: 11011591. DOI: 10.3390/ijms25073788.


An Overview of the Mechanisms Involved in Neuralgia.

Zhang B, Dong H, Wu Z, Jiang X, Zou W J Inflamm Res. 2023; 16:4087-4101.

PMID: 37745793 PMC: 10516189. DOI: 10.2147/JIR.S425966.


Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain.

Pawlik K, Mika J Molecules. 2023; 28(15).

PMID: 37570736 PMC: 10421203. DOI: 10.3390/molecules28155766.

References
1.
Urits I, Gress K, Charipova K, Orhurhu V, Freeman J, Kaye R . Diagnosis, Treatment, and Management of Dejerine-Roussy Syndrome: a Comprehensive Review. Curr Pain Headache Rep. 2020; 24(9):48. DOI: 10.1007/s11916-020-00887-3. View

2.
Sahin-Onat S, Unsal-Delialioglu S, Kulakli F, Ozel S . The effects of central post-stroke pain on quality of life and depression in patients with stroke. J Phys Ther Sci. 2016; 28(1):96-101. PMC: 4755983. DOI: 10.1589/jpts.28.96. View

3.
Paolucci S, Iosa M, Toni D, Barbanti P, Bovi P, Cavallini A . Prevalence and Time Course of Post-Stroke Pain: A Multicenter Prospective Hospital-Based Study. Pain Med. 2016; 17(5):924-30. DOI: 10.1093/pm/pnv019. View

4.
Hosomi K, Seymour B, Saitoh Y . Modulating the pain network--neurostimulation for central poststroke pain. Nat Rev Neurol. 2015; 11(5):290-9. DOI: 10.1038/nrneurol.2015.58. View

5.
Choi H, Aktas A, Bottros M . Pharmacotherapy to Manage Central Post-Stroke Pain. CNS Drugs. 2021; 35(2):151-160. DOI: 10.1007/s40263-021-00791-3. View