» Articles » PMID: 36590908

A New Machine Learning Model for Predicting Severity Prognosis in Patients with Pulmonary Embolism: Study Protocol from Wenzhou, China

Overview
Specialty Neurology
Date 2023 Jan 2
PMID 36590908
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Pulmonary embolism (PE) is a common thrombotic disease and potentially deadly cardiovascular disorder. The ratio of clinical misdiagnosis and missed diagnosis of PE is very large because patients with PE are asymptomatic or non-specific.

Methods: Using the clinical data from the First Affiliated Hospital of Wenzhou Medical University (Wenzhou, China), we proposed a swarm intelligence algorithm-based kernel extreme learning machine model (SSACS-KELM) to recognize and discriminate the severity of the PE by patient's basic information and serum biomarkers. First, an enhanced method (SSACS) is presented by combining the salp swarm algorithm (SSA) with the cuckoo search (CS). Then, the SSACS algorithm is introduced into the KELM classifier to propose the SSACS-KELM model to improve the accuracy and stability of the traditional classifier.

Results: In the experiments, the benchmark optimization performance of SSACS is confirmed by comparing SSACS with five original classical methods and five high-performance improved algorithms through benchmark function experiments. Then, the overall adaptability and accuracy of the SSACS-KELM model are tested using eight public data sets. Further, to highlight the superiority of SSACS-KELM on PE datasets, this paper conducts comparison experiments with other classical classifiers, swarm intelligence algorithms, and feature selection approaches.

Discussion: The experimental results show that high D-dimer concentration, hypoalbuminemia, and other indicators are important for the diagnosis of PE. The classification results showed that the accuracy of the prediction model was 99.33%. It is expected to be a new and accurate method to distinguish the severity of PE.

References
1.
Caraceni P, Domenicali M, Tovoli A, Napoli L, Serena Ricci C, Tufoni M . Clinical indications for the albumin use: still a controversial issue. Eur J Intern Med. 2013; 24(8):721-8. DOI: 10.1016/j.ejim.2013.05.015. View

2.
Kitonyi P, Segera D . Hybrid Gradient Descent Grey Wolf Optimizer for Optimal Feature Selection. Biomed Res Int. 2021; 2021:2555622. PMC: 8421169. DOI: 10.1155/2021/2555622. View

3.
Yang P, Li H, Zhang J, Xu X . Research progress on biomarkers of pulmonary embolism. Clin Respir J. 2021; 15(10):1046-1055. DOI: 10.1111/crj.13414. View

4.
Pribish A, Beyer S, Krawisz A, Weinberg I, Carroll B, Secemsky E . Sex differences in presentation, management, and outcomes among patients hospitalized with acute pulmonary embolism. Vasc Med. 2020; 25(6):541-548. PMC: 8076890. DOI: 10.1177/1358863X20964577. View

5.
Keller K, Beule J, Schulz A, Coldewey M, Dippold W, Balzer J . D-dimer for risk stratification in haemodynamically stable patients with acute pulmonary embolism. Adv Med Sci. 2015; 60(2):204-10. DOI: 10.1016/j.advms.2015.02.005. View