» Articles » PMID: 36589314

Emerging Role of Artificial Intelligence in Cardiac Electrophysiology

Abstract

Artificial intelligence (AI) and machine learning (ML) have significantly impacted the field of cardiovascular medicine, especially cardiac electrophysiology (EP), on multiple fronts. The goal of this review is to familiarize readers with the field of AI and ML and their emerging role in EP. The current review is divided into 3 sections. In the first section, we discuss the definitions and basics of AI, ML, and big data. In the second section, we discuss their application to EP in the context of detection, prediction, and management of arrhythmias. Finally, we discuss the regulatory issues, challenges, and future directions of AI in EP.

Citing Articles

Targeting Ventricular Arrhythmias in Non-Ischemic Patients: Advances in Diagnosis and Treatment.

Stanciulescu L, Dorobantu M, Vatasescu R Diagnostics (Basel). 2025; 15(4).

PMID: 40002571 PMC: 11854509. DOI: 10.3390/diagnostics15040420.


Multifocal electroretinogram changes after panretinal photocoagulation in early proliferative diabetic retinopathy.

Elsalhy F, Ali M, Morsy M, Khattab A, Ibrahim E, Mohammed H Med Hypothesis Discov Innov Ophthalmol. 2024; 13(3):121-128.

PMID: 39507807 PMC: 11537239. DOI: 10.51329/mehdiophthal1503.


Cardiovascular Imaging in the Era of Precision Medicine: Insights from Advanced Technologies - A Narrative Review.

Manoel P, Dike I, Anis H, Yassin N, Wojtara M, Uwishema O Health Sci Rep. 2024; 7(11):e70173.

PMID: 39479287 PMC: 11522615. DOI: 10.1002/hsr2.70173.


Advancing Cardiovascular Risk Assessment with Artificial Intelligence: Opportunities and Implications in North Carolina.

Conners K, Avery C, Syed F N C Med J. 2024; 85(1.

PMID: 38938760 PMC: 11208038. DOI: 10.18043/001c.91424.


Ventricular Tachycardia Catheter Ablation: Retrospective Analysis and Prospective Outlooks-A Comprehensive Review.

Stanciulescu L, Vatasescu R Biomedicines. 2024; 12(2).

PMID: 38397868 PMC: 10886924. DOI: 10.3390/biomedicines12020266.


References
1.
de Marvao A, Dawes T, ORegan D . Artificial Intelligence for Cardiac Imaging-Genetics Research. Front Cardiovasc Med. 2020; 6:195. PMC: 6985036. DOI: 10.3389/fcvm.2019.00195. View

2.
Khurshid S, Friedman S, Reeder C, Di Achille P, Diamant N, Singh P . ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation. Circulation. 2021; 145(2):122-133. PMC: 8748400. DOI: 10.1161/CIRCULATIONAHA.121.057480. View

3.
Popescu D, Shade J, Lai C, Aronis K, Ouyang D, Moorthy M . Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart. Nat Cardiovasc Res. 2022; 1(4):334-343. PMC: 9022904. DOI: 10.1038/s44161-022-00041-9. View

4.
Nguyen M, Van Nguyen B, Kim K . Deep Feature Learning for Sudden Cardiac Arrest Detection in Automated External Defibrillators. Sci Rep. 2018; 8(1):17196. PMC: 6249221. DOI: 10.1038/s41598-018-33424-9. View

5.
Wasserlauf J, You C, Patel R, Valys A, Albert D, Passman R . Smartwatch Performance for the Detection and Quantification of Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2019; 12(6):e006834. DOI: 10.1161/CIRCEP.118.006834. View