» Articles » PMID: 36585439

Explainable Automated Recognition of Emotional States from Canine Facial Expressions: the Case of Positive Anticipation and Frustration

Overview
Journal Sci Rep
Specialty Science
Date 2022 Dec 30
PMID 36585439
Authors
Affiliations
Soon will be listed here.
Abstract

In animal research, automation of affective states recognition has so far mainly addressed pain in a few species. Emotional states remain uncharted territories, especially in dogs, due to the complexity of their facial morphology and expressions. This study contributes to fill this gap in two aspects. First, it is the first to address dog emotional states using a dataset obtained in a controlled experimental setting, including videos from (n = 29) Labrador Retrievers assumed to be in two experimentally induced emotional states: negative (frustration) and positive (anticipation). The dogs' facial expressions were measured using the Dogs Facial Action Coding System (DogFACS). Two different approaches are compared in relation to our aim: (1) a DogFACS-based approach with a two-step pipeline consisting of (i) a DogFACS variable detector and (ii) a positive/negative state Decision Tree classifier; (2) An approach using deep learning techniques with no intermediate representation. The approaches reach accuracy of above 71% and 89%, respectively, with the deep learning approach performing better. Secondly, this study is also the first to study explainability of AI models in the context of emotion in animals. The DogFACS-based approach provides decision trees, that is a mathematical representation which reflects previous findings by human experts in relation to certain facial expressions (DogFACS variables) being correlates of specific emotional states. The deep learning approach offers a different, visual form of explainability in the form of heatmaps reflecting regions of focus of the network's attention, which in some cases show focus clearly related to the nature of particular DogFACS variables. These heatmaps may hold the key to novel insights on the sensitivity of the network to nuanced pixel patterns reflecting information invisible to the human eye.

Citing Articles

Generative AI Meets Animal Welfare: Evaluating GPT-4 for Pet Emotion Detection.

Cetintav B, Guven Y, Gulek E, Akbas A Animals (Basel). 2025; 15(4).

PMID: 40002974 PMC: 11851729. DOI: 10.3390/ani15040492.


Non-invasive canine electroencephalography (EEG): a systematic review.

Kulgod A, van der Linden D, Franca L, Jackson M, Zamansky A BMC Vet Res. 2025; 21(1):73.

PMID: 39966923 PMC: 11834203. DOI: 10.1186/s12917-025-04523-3.


Facial expressions during compound interventions of nociception, conspecific isolation, and sedation in horses.

Lundblad J, Rhodin M, Hernlund E, Bjarnestig H, Hiden Rudander S, Andersen P Sci Rep. 2025; 15(1):5373.

PMID: 39948238 PMC: 11825850. DOI: 10.1038/s41598-025-89329-x.


Automated landmark-based cat facial analysis and its applications.

Martvel G, Lazebnik T, Feighelstein M, Meller S, Shimshoni I, Finka L Front Vet Sci. 2024; 11:1442634.

PMID: 39717789 PMC: 11663861. DOI: 10.3389/fvets.2024.1442634.


Automated video-based pain recognition in cats using facial landmarks.

Martvel G, Lazebnik T, Feighelstein M, Henze L, Meller S, Shimshoni I Sci Rep. 2024; 14(1):28006.

PMID: 39543343 PMC: 11564822. DOI: 10.1038/s41598-024-78406-2.


References
1.
Bremhorst A, Sutter N, Wurbel H, Mills D, Riemer S . Differences in facial expressions during positive anticipation and frustration in dogs awaiting a reward. Sci Rep. 2019; 9(1):19312. PMC: 6917793. DOI: 10.1038/s41598-019-55714-6. View

2.
Caeiro C, Guo K, Mills D . Dogs and humans respond to emotionally competent stimuli by producing different facial actions. Sci Rep. 2017; 7(1):15525. PMC: 5686192. DOI: 10.1038/s41598-017-15091-4. View

3.
Andresen N, Wollhaf M, Hohlbaum K, Lewejohann L, Hellwich O, Thone-Reineke C . Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS One. 2020; 15(4):e0228059. PMC: 7159220. DOI: 10.1371/journal.pone.0228059. View

4.
Drake A, Klingenberg C . Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am Nat. 2010; 175(3):289-301. DOI: 10.1086/650372. View

5.
Morozov A, Parr L, Gothard K, Paz R, Pryluk R . Automatic Recognition of Macaque Facial Expressions for Detection of Affective States. eNeuro. 2021; 8(6). PMC: 8664380. DOI: 10.1523/ENEURO.0117-21.2021. View