» Articles » PMID: 36583830

Bending Resistance Covalent Organic Framework Superlattice: "Nano-Hourglass"-Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors

Overview
Journal Nanomicro Lett
Publisher Springer
Date 2022 Dec 30
PMID 36583830
Authors
Affiliations
Soon will be listed here.
Abstract

Covalent organic framework (COF) film with highly exposed active sites is considered as the promising flexible self-supported electrode for in-plane micro-supercapacitor (MSC). Superlattice configuration assembled alternately by different nanofilms based on van der Waals force can integrate the advantages of each isolated layer to exhibit unexpected performances as MSC film electrodes, which may be a novel option to ensure energy output. Herein, a mesoporous free-standing A-COF nanofilm (pore size is 3.9 nm, averaged thickness is 4.1 nm) with imine bond linkage and a microporous B-COF nanofilm (pore size is 1.5 nm, averaged thickness is 9.3 nm) with β-keto-enamine-linkages are prepared, and for the first time, we assembly the two lattice matching films into sandwich-type superlattices via layer-by-layer transfer, in which ABA-COF superlattice stacking into a "nano-hourglass" steric configuration that can accelerate the dynamic charge transportation/accumulation and promote the sufficient redox reactions to energy storage. The fabricated flexible MSC-ABA-COF exhibits the highest intrinsic C of 927.9 F cm at 10 mV s than reported two-dimensional alloy, graphite-like carbon and undoped COF-based MSC devices so far, and shows a bending-resistant energy density of 63.2 mWh cm even after high-angle and repeat arbitrary bending from 0 to 180°. This work provides a feasible way to meet the demand for future miniaturization and wearable electronics.

Citing Articles

Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications.

Park J, Pattipaka S, Hwang G, Park M, Woo Y, Kim Y Nanomicro Lett. 2024; 16(1):276.

PMID: 39186184 PMC: 11347555. DOI: 10.1007/s40820-024-01483-5.


All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics.

Xu X, Zhang J, Zhang Z, Lu G, Cao W, Wang N Nanomicro Lett. 2024; 16(1):116.

PMID: 38358567 PMC: 10869674. DOI: 10.1007/s40820-024-01343-2.


Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors.

Xu S, Wu J, Wang X, Zhang Q Chem Sci. 2023; 14(47):13601-13628.

PMID: 38075665 PMC: 10699565. DOI: 10.1039/d3sc04571d.


Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks.

Cao Y, Wu R, Gao Y, Zhou Y, Zhu J Nanomicro Lett. 2023; 16(1):37.

PMID: 38032432 PMC: 10689676. DOI: 10.1007/s40820-023-01249-5.


NH-Induced In Situ Etching Strategy Derived 3D-Interconnected Porous MXene/Carbon Dots Films for High Performance Flexible Supercapacitors.

Wang Y, Chen N, Zhou B, Zhou X, Pu B, Bai J Nanomicro Lett. 2023; 15(1):231.

PMID: 37851182 PMC: 10584800. DOI: 10.1007/s40820-023-01204-4.

References
1.
Wu Z, Parvez K, Feng X, Mullen K . Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun. 2013; 4:2487. PMC: 3778542. DOI: 10.1038/ncomms3487. View

2.
Li H, An Y, Zhang E, Zhou S, Li M, Li Z . A covalent organic framework nanosheet-based electrochemical aptasensor with sensitive detection performance. Anal Chim Acta. 2022; 1223:340204. DOI: 10.1016/j.aca.2022.340204. View

3.
Ye J, Tan H, Wu S, Ni K, Pan F, Liu J . Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro-Supercapacitors with Ultrahigh Power Output. Adv Mater. 2018; 30(27):e1801384. DOI: 10.1002/adma.201801384. View

4.
Wang Y, Song Y, Xia Y . Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev. 2016; 45(21):5925-5950. DOI: 10.1039/c5cs00580a. View

5.
Novoselov K, Mishchenko A, Carvalho A, Neto A . 2D materials and van der Waals heterostructures. Science. 2016; 353(6298):aac9439. DOI: 10.1126/science.aac9439. View