» Articles » PMID: 36582679

Neuroimaging Biomarkers for Detecting Schizophrenia: A Resting-state Functional MRI-based Radiomics Analysis

Overview
Journal Heliyon
Specialty Social Sciences
Date 2022 Dec 30
PMID 36582679
Authors
Affiliations
Soon will be listed here.
Abstract

Schizophrenia (SZ) is a common psychiatric disorder that is difficult to accurately diagnose in clinical practice. Quantifiable biomarkers are urgently required to explore the potential physiological mechanism of SZ and improve its diagnostic accuracy. Thus, this study aimed to identify biomarkers that classify SZ patients and healthy control subjects and investigate the potential neural mechanisms of SZ using degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based radiomics. Radiomics features were extracted from DC and VMHC metrics generated via resting-state functional magnetic resonance imaging, and significant features were selected and dimensionality was reduced using t-tests and least absolute shrinkage and selection operator. Subsequently, we built our model using a support vector machine classifier. We observed that our method obtained great classification performance (area under the curve, 0.808; accuracy, 74.02%), and it could be generalized to different brain atlases. The regions that we identified as discriminative features mainly included bilateral dorsal caudate and front-parietal, somatomotor, limbic, and default mode networks. Our findings showed that the radiomics-based machine learning method could facilitate us to understand the potential pathological mechanism of SZ more comprehensively and contribute to the accurate diagnosis of patients with SZ.

Citing Articles

Association between homotopic connectivity and clinical symptoms in first-episode schizophrenia.

Zhang H, Kuang Q, Li R, Song Z, She S, Zheng Y Heliyon. 2024; 10(9):e30347.

PMID: 38707391 PMC: 11066690. DOI: 10.1016/j.heliyon.2024.e30347.

References
1.
Shi D, Zhang H, Wang G, Wang S, Yao X, Li Y . Machine Learning for Detecting Parkinson's Disease by Resting-State Functional Magnetic Resonance Imaging: A Multicenter Radiomics Analysis. Front Aging Neurosci. 2022; 14:806828. PMC: 8928361. DOI: 10.3389/fnagi.2022.806828. View

2.
Simpson E, Kellendonk C, Kandel E . A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron. 2010; 65(5):585-96. PMC: 4929859. DOI: 10.1016/j.neuron.2010.02.014. View

3.
Zheng J, Wei X, Wang J, Lin H, Pan H, Shi Y . Diagnosis of Schizophrenia Based on Deep Learning Using fMRI. Comput Math Methods Med. 2021; 2021:8437260. PMC: 8594998. DOI: 10.1155/2021/8437260. View

4.
Sun Y, Collinson S, Suckling J, Sim K . Dynamic Reorganization of Functional Connectivity Reveals Abnormal Temporal Efficiency in Schizophrenia. Schizophr Bull. 2018; 45(3):659-669. PMC: 6483577. DOI: 10.1093/schbul/sby077. View

5.
First M, Gaebel W, Maj M, Stein D, Kogan C, Saunders J . An organization- and category-level comparison of diagnostic requirements for mental disorders in ICD-11 and DSM-5. World Psychiatry. 2021; 20(1):34-51. PMC: 7801846. DOI: 10.1002/wps.20825. View