» Articles » PMID: 36574693

Iontronic Analog of Synaptic Plasticity: Hydrogel-based Ionic Diode with Chemical Precipitation and Dissolution

Overview
Specialty Science
Date 2022 Dec 27
PMID 36574693
Authors
Affiliations
Soon will be listed here.
Abstract

In this study, an aqueous nonlinear synaptic element showing plasticity behavior is developed, which is based on the chemical processes in an ionic diode. The device is simple, fully ionic, and easily configurable, requiring only two terminals-for input and output-similar to biological synapses. The key processes realizing the plasticity features are chemical precipitation and dissolution, which occur at forward- or reverse-biased ionic diode junctions in appropriate reservoir electrolytes. Given that the precipitate acts as a physical barrier in the circuit, the above processes change the diode conductivity, which can be interpreted as adjusting "synaptic weight" of the system. By varying the operating conditions, we first demonstrate the four types of plasticity that can be found in biological system: long-term potentiation/depression and short-term potentiation/depression. The plasticity of the proposed iontronic device has characteristics similar to those of neural synapses. To demonstrate its potential use in comparatively complex information processing, we develop a precipitation-based iontronic synapse (PIS) capable of both potentiation and depression. Finally, we show that the postsynaptic signals from the multiple excitatory or inhibitory PISs can be integrated into the total "dendritic" current, which is a function of time and input history, as in actual hippocampal neural circuits.

Citing Articles

Aqueous power source integrated on a microfluidic chip.

Yeon S, Kim Y, Kang C, Park S, Chung T Proc Natl Acad Sci U S A. 2025; 122(6):e2423610122.

PMID: 39918946 PMC: 11831149. DOI: 10.1073/pnas.2423610122.


Bioactive Ion-Confined Ultracapacitive Memristors with Neuromorphic Functions.

Li P, Feder-Kubis J, Kunigkeit J, Zielinska-Blajet M, Brunner E, Grothe J Angew Chem Int Ed Engl. 2024; 63(51):e202412674.

PMID: 39292967 PMC: 11627131. DOI: 10.1002/anie.202412674.


Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles.

Chen L, Ren M, Zhou J, Zhou X, Liu F, Di J Proc Natl Acad Sci U S A. 2024; 121(33):e2407971121.

PMID: 39110725 PMC: 11331142. DOI: 10.1073/pnas.2407971121.


Highly stretchable dynamic hydrogels for soft multilayer electronics.

ONeill S, Huang Z, Chen X, Sala R, McCune J, Malliaras G Sci Adv. 2024; 10(29):eadn5142.

PMID: 39018406 PMC: 466958. DOI: 10.1126/sciadv.adn5142.


Geometrically Scalable Iontronic Memristors: Employing Bipolar Polyelectrolyte Gels for Neuromorphic Systems.

Zhang Z, Sabbagh B, Chen Y, Yossifon G ACS Nano. 2024; 18(23):15025-15034.

PMID: 38804641 PMC: 11171754. DOI: 10.1021/acsnano.4c01730.


References
1.
Tybrandt K, Larsson K, Richter-Dahlfors A, Berggren M . Ion bipolar junction transistors. Proc Natl Acad Sci U S A. 2010; 107(22):9929-32. PMC: 2890459. DOI: 10.1073/pnas.0913911107. View

2.
Gkoupidenis P, Koutsouras D, Malliaras G . Neuromorphic device architectures with global connectivity through electrolyte gating. Nat Commun. 2017; 8:15448. PMC: 5442355. DOI: 10.1038/ncomms15448. View

3.
Stuart G, Spruston N . Dendritic integration: 60 years of progress. Nat Neurosci. 2015; 18(12):1713-21. DOI: 10.1038/nn.4157. View

4.
Erulkar S, Rahamimoff R . The role of calcium ions in tetanic and post-tetanic increase of miniature end-plate potential frequency. J Physiol. 1978; 278:501-11. PMC: 1282365. DOI: 10.1113/jphysiol.1978.sp012320. View

5.
Gkoupidenis P, Schaefer N, Garlan B, Malliaras G . Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. Adv Mater. 2015; 27(44):7176-80. DOI: 10.1002/adma.201503674. View