» Articles » PMID: 36569981

Clinically Relevant Biofilm Models: A Need to Mimic and Recapitulate the Host Environment

Overview
Journal Biofilm
Date 2022 Dec 26
PMID 36569981
Authors
Affiliations
Soon will be listed here.
Abstract

Biofilm-associated infections are difficult to treat and eradicate because of their increased antimicrobial tolerance. biofilm models have enabled the high throughput testing of an array of differing novel antimicrobials and treatment strategies. However, biofilms formed in these oftentimes basic systems do not resemble biofilms seen . As a result, translatability from the lab to the clinic is poor or limited. To improve translatability, models must better recapitulate the host environment. This review describes and critically evaluates new and innovative models that better mimic the environments of a variety of clinically important, biofilm-associated infections of the skin, oropharynx, lungs, and infections related to indwelling implants and medical devices. This review highlights that many of these models represent considerable advances in the field of biofilm research and help to translate laboratory findings into the clinical practice.

Citing Articles

Nitroreductase-activatable photosensitizers for selective antimicrobial photodynamic therapy.

Tung M, Ma T, Lopez-Miranda I, Milstein J, Beharry A RSC Med Chem. 2025; .

PMID: 40060997 PMC: 11883423. DOI: 10.1039/d4md00890a.


Controlling Oral Polymicrobial Biofilm Using Usnic Acid on the Surface of Titanium in the Artificial Saliva Media.

Tabassum N, Khan F, Jeong G, Oh D, Kim Y Antibiotics (Basel). 2025; 14(2).

PMID: 40001359 PMC: 11852094. DOI: 10.3390/antibiotics14020115.


The appropriate nutrient conditions for methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro.

Vavrova P, Jandourek O, Diepoltova A, Nachtigal P, Konecna K Sci Rep. 2025; 15(1):183.

PMID: 39747199 PMC: 11696109. DOI: 10.1038/s41598-024-83745-1.


Optimization of Biofilm Formation in In Vitro Conditions Mimicking Stomach.

Krzyzek P, Migdal P, Krzyzanowska B, Duda-Madej A Int J Mol Sci. 2024; 25(18).

PMID: 39337326 PMC: 11432336. DOI: 10.3390/ijms25189839.


Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy.

Coenye T, Ahonen M, Anderson S, Camara M, Chundi P, Fields M Biofilm. 2024; 8:100210.

PMID: 39221168 PMC: 11364012. DOI: 10.1016/j.bioflm.2024.100210.


References
1.
Mehta G, Macek Jr M, Mehta A . Cystic fibrosis across Europe: EuroCareCF analysis of demographic data from 35 countries. J Cyst Fibros. 2010; 9 Suppl 2:S5-S21. DOI: 10.1016/j.jcf.2010.08.002. View

2.
Sanchez M, Llama-Palacios A, Fernandez E, Figuero E, Marin M, Leon R . An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater. 2014; 30(10):1161-71. DOI: 10.1016/j.dental.2014.07.008. View

3.
Vila T, Rozental S, de Sa Guimaraes C . A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers Med Sci. 2014; 30(3):1031-9. DOI: 10.1007/s10103-014-1689-y. View

4.
Fung C, Naughton S, Turnbull L, Tingpej P, Rose B, Arthur J . Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med Microbiol. 2010; 59(Pt 9):1089-1100. DOI: 10.1099/jmm.0.019984-0. View

5.
Spittaels K, Coenye T . Developing an in vitro artificial sebum model to study Propionibacterium acnes biofilms. Anaerobe. 2017; 49:21-29. DOI: 10.1016/j.anaerobe.2017.11.002. View