6.
Wu T, Salim A, Capon R
. Millmerranones A-F: A Meroterpene Cyclic Carbonate and Related Metabolites from the Australian Fungus sp. CMB-MRF324. Org Lett. 2021; 23(21):8424-8428.
DOI: 10.1021/acs.orglett.1c03150.
View
7.
Kaji A, Iwata T, Kiriyama N, Wakusawa S, Miyamoto K
. Four new metabolites of Aspergillus terreus. Chem Pharm Bull (Tokyo). 1994; 42(8):1682-4.
DOI: 10.1248/cpb.42.1682.
View
8.
Hirota A, Nakagawa M, Sakai H, Isogai A
. Terrecyclic acid A, a new antibiotic from Aspergillus terreus. III. 13C NMR spectrum of terrecyclic acid A. J Antibiot (Tokyo). 1984; 37(5):475-8.
DOI: 10.7164/antibiotics.37.475.
View
9.
Hirota A, Nakagawa M, Sakai H, Isogai A
. Terrecyclic acid A, a new antibiotic from Aspergillus terreus. II. Structure of terrecyclic acid A. J Antibiot (Tokyo). 1982; 35(7):783-7.
DOI: 10.7164/antibiotics.35.783.
View
10.
Quezada M, Shang Z, Kalansuriya P, Salim A, Lacey E, Capon R
. Waspergillamide A, a Nitro depsi-Tetrapeptide Diketopiperazine from an Australian Mud Dauber Wasp-Associated Aspergillus sp. (CMB-W031). J Nat Prod. 2017; 80(4):1192-1195.
DOI: 10.1021/acs.jnatprod.6b01062.
View
11.
Nakagawa M, Hirota A, Sakai H, Isogai A
. Terrecyclic acid A, a new antibiotic from Aspergillus terreus. I. Taxonomy, production, and chemical and biological properties. J Antibiot (Tokyo). 1982; 35(7):778-82.
DOI: 10.7164/antibiotics.35.778.
View
12.
Shiomi K, Hatae K, Yamaguchi Y, Masuma R, Tomoda H, Kobayashi S
. New antibiotics miyakamides produced by a fungus. J Antibiot (Tokyo). 2003; 55(11):952-61.
DOI: 10.7164/antibiotics.55.952.
View
13.
Zhang L, Feng B, Zhao Y, Sun Y, Liu B, Liu F
. Polyketide butenolide, diphenyl ether, and benzophenone derivatives from the fungus Aspergillus flavipes PJ03-11. Bioorg Med Chem Lett. 2015; 26(2):346-350.
DOI: 10.1016/j.bmcl.2015.12.009.
View
14.
Hooft R, Straver L, Spek A
. Determination of absolute structure using Bayesian statistics on Bijvoet differences. J Appl Crystallogr. 2009; 41(Pt 1):96-103.
PMC: 2467520.
DOI: 10.1107/S0021889807059870.
View
15.
Pang X, Zhao J, Fang X, Zhang T, Zhang D, Liu H
. Metabolites from the Plant Endophytic Fungus Aspergillus sp. CPCC 400735 and Their Anti-HIV Activities. J Nat Prod. 2017; 80(10):2595-2601.
DOI: 10.1021/acs.jnatprod.6b00878.
View
16.
Liang X, Zhang X, Zhao Y, Feng J, Zeng J, Shi Q
. Aspulvins A-H, Aspulvinone Analogues with SARS-CoV-2 M Inhibitory and Anti-inflammatory Activities from an Endophytic sp. J Nat Prod. 2022; 85(4):878-887.
DOI: 10.1021/acs.jnatprod.1c01003.
View
17.
Salim A, Khalil Z, Elbanna A, Wu T, Capon R
. Methods in Microbial Biodiscovery. Mar Drugs. 2021; 19(9).
PMC: 8464790.
DOI: 10.3390/md19090503.
View
18.
Neff S, Lee S, Asami Y, Ahn J, Oh H, Baltrusaitis J
. Aflaquinolones A-G: secondary metabolites from marine and fungicolous isolates of Aspergillus spp. J Nat Prod. 2012; 75(3):464-72.
PMC: 3311757.
DOI: 10.1021/np200958r.
View
19.
Elyashberg M, Blinov K, Molodtsov S, Williams A
. Structure revision of asperjinone using computer-assisted structure elucidation methods. J Nat Prod. 2013; 76(1):113-6.
DOI: 10.1021/np300218g.
View
20.
Alvi K, Pu H, Luche M, Rice A, App H, McMahon G
. Asterriquinones produced by Aspergillus candidus inhibit binding of the Grb-2 adapter to phosphorylated EGF receptor tyrosine kinase. J Antibiot (Tokyo). 1999; 52(3):215-23.
DOI: 10.7164/antibiotics.52.215.
View