» Articles » PMID: 36555253

Microglia and Brain Macrophages As Drivers of Glioma Progression

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Dec 23
PMID 36555253
Authors
Affiliations
Soon will be listed here.
Abstract

Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These "synergistic" (we suggest calling them "Janus") pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets.

Citing Articles

Exosomes in the Chemoresistance of Glioma: Key Point in Chemoresistance.

Guo X, Piao H, Sui R J Cell Mol Med. 2025; 29(4):e70401.

PMID: 39950738 PMC: 11826829. DOI: 10.1111/jcmm.70401.


Divergent Crosstalk Between Microglia and T Cells in Brain Cancers: Implications for Novel Therapeutic Strategies.

Yi M, Lee J, Moon S, So E, Bang G, Moon K Biomedicines. 2025; 13(1).

PMID: 39857798 PMC: 11763300. DOI: 10.3390/biomedicines13010216.


Chitinase-3-like-1: a multifaceted player in neuroinflammation and degenerative pathologies with therapeutic implications.

Mwale P, Hsieh C, Yen T, Jan J, Taliyan R, Yang C Mol Neurodegener. 2025; 20(1):7.

PMID: 39827337 PMC: 11742494. DOI: 10.1186/s13024-025-00801-8.


New insights into the role of the CHI3L2 protein in invasive ductal breast carcinoma.

Rusak A, Katnik E, Gornicki T, Schmuttermaier C, Kujawa K, Piotrowska A Sci Rep. 2024; 14(1):28529.

PMID: 39557919 PMC: 11574116. DOI: 10.1038/s41598-024-77930-5.


CSF3R as a potential prognostic biomarker and immunotherapy target in glioma.

Huang M, Zhang L, Wu Y, Zhou X, Wang Y, Zhang J Cent Eur J Immunol. 2024; 49(2):155-168.

PMID: 39381559 PMC: 11457564. DOI: 10.5114/ceji.2024.140651.


References
1.
Franklin R, Liao W, Sarkar A, Kim M, Bivona M, Liu K . The cellular and molecular origin of tumor-associated macrophages. Science. 2014; 344(6186):921-5. PMC: 4204732. DOI: 10.1126/science.1252510. View

2.
Li X, Guan J, Jiang Z, Cheng S, Hou W, Yao J . Microglial Exosome miR-7239-3p Promotes Glioma Progression by Regulating Circadian Genes. Neurosci Bull. 2021; 37(4):497-510. PMC: 8055789. DOI: 10.1007/s12264-020-00626-z. View

3.
Kouzarides T . Chromatin modifications and their function. Cell. 2007; 128(4):693-705. DOI: 10.1016/j.cell.2007.02.005. View

4.
Chen X, Zhang L, Zhang I, Liang J, Wang H, Ouyang M . RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 2014; 74(24):7285-7297. PMC: 4268204. DOI: 10.1158/0008-5472.CAN-14-1240. View

5.
Ye X, Xu S, Xin Y, Yu S, Ping Y, Chen L . Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol. 2012; 189(1):444-53. DOI: 10.4049/jimmunol.1103248. View