» Articles » PMID: 36545122

Proteomic Analysis of Spinal Cord Tissue in a Rat Model of Cancer-induced Bone Pain

Overview
Specialty Molecular Biology
Date 2022 Dec 22
PMID 36545122
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Cancer-induced bone pain (CIBP) is a moderate to severe pain and seriously affects patients' quality of life. Spinal cord plays critical roles in pain generation and maintenance. Identifying differentially expressed proteins (DEPs) in spinal cord is essential to elucidate the mechanisms of cancer pain.

Methods: CIBP rat model was established by the intratibial inoculation of MRMT-1 cells. Positron emission tomography (PET) scan and transmission electron microscopy (TEM) were used to measure the stats of spinal cord in rats. Label free Liquid Chromatography with tandem mass spectrometry (LC-MS-MS) were used to analyze the whole proteins from the lumbar spinal cord. Differentially expressed proteins (DEPs) were performed using Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and verified using Western blot and immunofluorescence assay.

Results: In the current study, CIBP rats exhibited bone damage, spontaneous pain, mechanical hyperalgesia, and impaired motor ability. In spinal cord, an hypermetabolism and functional abnormality were revealed on CIBP rats. An increase of synaptic vesicles density in active zone and a disruption of mitochondrial structure in spinal cord of CIBP rats were observed. Meanwhile, 422 DEPs, consisting of 167 up-regulated and 255 down-regulated proteins, were identified among total 1539 proteins. GO enrichment analysis indicated that the DEPs were mainly involved in catabolic process, synaptic function, and enzymic activity. KEGG pathway enrichment analysis indicated a series of pathways, including nervous system disease, hormonal signaling pathways and amino acid metabolism, were involved. Expression change of synaptic and mitochondrial related protein, such as complexin 1 (CPLX1), synaptosomal-associated protein 25 (SNAP25), synaptotagmin 1 (SYT1), aldehyde dehydrogenase isoform 1B1 (ALDH1B1), Glycine amidinotransferase (GATM) and NADH:ubiquinone oxidoreductase subunit A11 (NDUFA11), were further validated using immunofluorescence and Western blot analysis.

Conclusion: This study provides valuable information for understanding the mechanisms of CIBP, and supplies potential therapeutic targets for cancer pain.

Citing Articles

NDUFA11 may be the disulfidptosis-related biomarker of ischemic stroke based on integrated bioinformatics, clinical samples, and experimental analyses.

Li S, Chen N, He J, Luo X, Lin W Front Neurosci. 2025; 18:1505493.

PMID: 39877656 PMC: 11772302. DOI: 10.3389/fnins.2024.1505493.


OBSERVE: guidelines for the refinement of rodent cancer models.

De Vleeschauwer S, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne A Nat Protoc. 2024; 19(9):2571-2596.

PMID: 38992214 DOI: 10.1038/s41596-024-00998-w.


Anemoside B4 alleviates arthritis pain via suppressing ferroptosis-mediated inflammation.

Guo C, Yue Y, Wang B, Chen S, Li D, Zhen F J Cell Mol Med. 2024; 28(4):e18136.

PMID: 38334255 PMC: 10853948. DOI: 10.1111/jcmm.18136.

References
1.
Gokhale A, Lee C, Zlatic S, Freeman A, Shearing N, Hartwig C . Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci. 2021; 41(31):6596-6616. PMC: 8336702. DOI: 10.1523/JNEUROSCI.2197-20.2021. View

2.
Lei T, Qian H, Lei P, Hu Y . Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma. Cancer Sci. 2021; 112(11):4785-4798. PMC: 8586685. DOI: 10.1111/cas.15131. View

3.
Jang S, Javadov S . Elucidating the contribution of ETC complexes I and II to the respirasome formation in cardiac mitochondria. Sci Rep. 2018; 8(1):17732. PMC: 6286307. DOI: 10.1038/s41598-018-36040-9. View

4.
Luo C, Kuner T, Kuner R . Synaptic plasticity in pathological pain. Trends Neurosci. 2014; 37(6):343-55. DOI: 10.1016/j.tins.2014.04.002. View

5.
Dhara M, Yarzagaray A, Schwarz Y, Dutta S, Grabner C, Moghadam P . Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. J Cell Biol. 2014; 204(7):1123-40. PMC: 3971750. DOI: 10.1083/jcb.201311085. View