» Articles » PMID: 36542907

Equitable Modelling of Brain Imaging by Counterfactual Augmentation with Morphologically Constrained 3D Deep Generative Models

Overview
Journal Med Image Anal
Publisher Elsevier
Specialty Radiology
Date 2022 Dec 21
PMID 36542907
Authors
Affiliations
Soon will be listed here.
Abstract

We describe CounterSynth, a conditional generative model of diffeomorphic deformations that induce label-driven, biologically plausible changes in volumetric brain images. The model is intended to synthesise counterfactual training data augmentations for downstream discriminative modelling tasks where fidelity is limited by data imbalance, distributional instability, confounding, or underspecification, and exhibits inequitable performance across distinct subpopulations. Focusing on demographic attributes, we evaluate the quality of synthesised counterfactuals with voxel-based morphometry, classification and regression of the conditioning attributes, and the Fréchet inception distance. Examining downstream discriminative performance in the context of engineered demographic imbalance and confounding, we use UK Biobank and OASIS magnetic resonance imaging data to benchmark CounterSynth augmentation against current solutions to these problems. We achieve state-of-the-art improvements, both in overall fidelity and equity. The source code for CounterSynth is available at https://github.com/guilherme-pombo/CounterSynth.

Citing Articles

Addressing fairness issues in deep learning-based medical image analysis: a systematic review.

Xu Z, Li J, Yao Q, Li H, Zhao M, Kevin Zhou S NPJ Digit Med. 2024; 7(1):286.

PMID: 39420149 PMC: 11487181. DOI: 10.1038/s41746-024-01276-5.


Pioneering new paths: the role of generative modelling in neurological disease research.

Seiler M, Ritter K Pflugers Arch. 2024; .

PMID: 39377960 DOI: 10.1007/s00424-024-03016-w.


Metadata-conditioned generative models to synthesize anatomically-plausible 3D brain MRIs.

Peng W, Bosschieter T, Ouyang J, Paul R, Sullivan E, Pfefferbaum A Med Image Anal. 2024; 98:103325.

PMID: 39208560 PMC: 11416096. DOI: 10.1016/j.media.2024.103325.


Sex-Based Performance Disparities in Machine Learning Algorithms for Cardiac Disease Prediction: Exploratory Study.

Straw I, Rees G, Nachev P J Med Internet Res. 2024; 26:e46936.

PMID: 39186324 PMC: 11384168. DOI: 10.2196/46936.


Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review.

Kebaili A, Lapuyade-Lahorgue J, Ruan S J Imaging. 2023; 9(4).

PMID: 37103232 PMC: 10144738. DOI: 10.3390/jimaging9040081.


References
1.
Spychala M, Honarpisheh P, McCullough L . Sex differences in neuroinflammation and neuroprotection in ischemic stroke. J Neurosci Res. 2016; 95(1-2):462-471. PMC: 5217708. DOI: 10.1002/jnr.23962. View

2.
Ashburner J, Ridgway G . Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci. 2013; 6:197. PMC: 3564017. DOI: 10.3389/fnins.2012.00197. View

3.
Carruthers R, Straw I, Ruffle J, Herron D, Nelson A, Bzdok D . Representational ethical model calibration. NPJ Digit Med. 2022; 5(1):170. PMC: 9636204. DOI: 10.1038/s41746-022-00716-4. View

4.
Korkmaz Y, Dar S, Yurt M, Ozbey M, Cukur T . Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers. IEEE Trans Med Imaging. 2022; 41(7):1747-1763. DOI: 10.1109/TMI.2022.3147426. View

5.
Lin W, Lin W, Chen G, Zhang H, Gao Q, Huang Y . Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer's Disease. Front Neurosci. 2021; 15:646013. PMC: 8080880. DOI: 10.3389/fnins.2021.646013. View