» Articles » PMID: 36541659

Controlled Transport of Individual Microparticles Using Dielectrophoresis

Overview
Journal Langmuir
Specialty Chemistry
Date 2022 Dec 21
PMID 36541659
Authors
Affiliations
Soon will be listed here.
Abstract

A dielectrophoretic device employing a planar array of microelectrodes is designed for controlled transport of individual microparticles. By exciting the electrodes in sequence, a moving dielectrophoretic force is created that can drag a particle across the electrodes in a straight line. The electrode shapes are designed to counter any lateral drift of the trapped particle during transport. This facilitates single particle transport by creating a narrow two-dimensional corridor for the moving dielectrophoretic force to operate on. The design and analysis processes are discussed in detail. Numerical simulations are performed to calculate the electromagnetic field distribution and the generated dielectrophoretic force near the electrodes. The Langevin equation is used for analyzing the trajectory of a microparticle under the influence of the external forces. The simulations show how the designed electrode geometry produces the necessary lateral confinement required for successful particle transport. Finally, experimental results are presented showing controlled bidirectional linear transport of single polystyrene beads of radius 10 and 5 μm for a distances 840 and 1100 μm, respectively. The capabilities of the proposed platform make it suitable for micro total analysis systems (μTAS) and lab-on-a-chip (LOC) applications.

Citing Articles

Development of a Tool for Verifying Leakage Detection in Microfluidic Systems.

Bozorgnezhad A, Herbertson L, Guha S Micromachines (Basel). 2025; 16(2).

PMID: 40047573 PMC: 11857335. DOI: 10.3390/mi16020124.


Parallelization of Curved Inertial Microfluidic Channels to Increase the Throughput of Simultaneous Microparticle Separation and Washing.

Norouzy N, Nikdoost A, Rezai P Micromachines (Basel). 2024; 15(10).

PMID: 39459102 PMC: 11509581. DOI: 10.3390/mi15101228.


Beyond two dimensions: Exploring 3D dielectrophoresis for microparticle control using carbon electrodes.

Pilloni O, Madou M, Oropeza-Ramos L PLoS One. 2024; 19(9):e0310978.

PMID: 39325809 PMC: 11426537. DOI: 10.1371/journal.pone.0310978.


Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review.

Bandaru S, Arora D, Ganesh K, Umrao S, Thomas S, Bhaskar S Nanomaterials (Basel). 2024; 14(17).

PMID: 39269049 PMC: 11397018. DOI: 10.3390/nano14171387.


Fabrication of Two-Layer Microfluidic Devices with Porous Electrodes Using Printed Sacrificial Layers.

Ino K, Konno A, Utagawa Y, Kanno T, Iwase K, Abe H Micromachines (Basel). 2024; 15(8).

PMID: 39203705 PMC: 11356774. DOI: 10.3390/mi15081054.


References
1.
Waheed W, Alazzam A, Al-Khateeb A, Abu-Nada E . Multiple Particle Manipulation under Dielectrophoresis Effect: Modeling and Experiments. Langmuir. 2020; 36(12):3016-3028. DOI: 10.1021/acs.langmuir.0c00187. View

2.
Zaman M, Padhy P, Ren W, Wu M, Hesselink L . Microparticle transport along a planar electrode array using moving dielectrophoresis. J Appl Phys. 2021; 130(3):034902. PMC: 8294858. DOI: 10.1063/5.0049126. View

3.
Fernandez R, Rohani A, Farmehini V, Swami N . Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta. 2017; 966:11-33. PMC: 5424535. DOI: 10.1016/j.aca.2017.02.024. View

4.
Hsiung L, Yang C, Chiu C, Chen C, Wang Y, Lee H . A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosens Bioelectron. 2008; 24(4):875-81. DOI: 10.1016/j.bios.2008.07.027. View

5.
Lapizco-Encinas B, Simmons B, Cummings E, Fintschenko Y . Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem. 2004; 76(6):1571-9. DOI: 10.1021/ac034804j. View