» Articles » PMID: 36480927

LDAK-GBAT: Fast and Powerful Gene-based Association Testing Using Summary Statistics

Overview
Journal Am J Hum Genet
Publisher Cell Press
Specialty Genetics
Date 2022 Dec 8
PMID 36480927
Authors
Affiliations
Soon will be listed here.
Abstract

We present LDAK-GBAT, a tool for gene-based association testing using summary statistics from genome-wide association studies that is computationally efficient, produces well-calibrated p values, and is significantly more powerful than existing tools. LDAK-GBAT takes approximately 30 min to analyze imputed data (2.9M common, genic SNPs), requiring less than 10 Gb memory. It shows good control of type 1 error given an appropriate reference panel. Across 109 phenotypes (82 from the UK Biobank, 18 from the Million Veteran Program, and nine from the Psychiatric Genetics Consortium), LDAK-GBAT finds on average 19% (SE: 1%) more significant genes than the existing tool sumFREGAT-ACAT, with even greater gains in comparison with MAGMA, GCTA-fastBAT, sumFREGAT-SKAT-O, and sumFREGAT-PCA.

Citing Articles

Gene-based Hardy-Weinberg equilibrium test using genotype count data: application to six types of cancers.

Nishino J, Miya F, Kato M BMC Genomics. 2025; 26(1):124.

PMID: 39930364 PMC: 11809088. DOI: 10.1186/s12864-025-11321-6.


Increasing Representativeness in the Cohort Using Inverse Probability Weighting.

Kambara M, Sharma S, Spouge J, Jordan I, Marino-Ramirez L medRxiv. 2025; .

PMID: 39802779 PMC: 11722450. DOI: 10.1101/2024.10.02.24314774.


The goldmine of GWAS summary statistics: a systematic review of methods and tools.

Kontou P, Bagos P BioData Min. 2024; 17(1):31.

PMID: 39238044 PMC: 11375927. DOI: 10.1186/s13040-024-00385-x.


Improved functional mapping of complex trait heritability with GSA-MiXeR implicates biologically specific gene sets.

Frei O, Hindley G, Shadrin A, van der Meer D, Akdeniz B, Hagen E Nat Genet. 2024; 56(6):1310-1318.

PMID: 38831010 PMC: 11759099. DOI: 10.1038/s41588-024-01771-1.


Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework.

Zhang S, Jiang Z, Zeng P J Transl Med. 2024; 22(1):258.

PMID: 38461317 PMC: 10924384. DOI: 10.1186/s12967-024-05053-6.


References
1.
de Leeuw C, Mooij J, Heskes T, Posthuma D . MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015; 11(4):e1004219. PMC: 4401657. DOI: 10.1371/journal.pcbi.1004219. View

2.
Svishcheva G, Belonogova N, Zorkoltseva I, Kirichenko A, Axenovich T . Gene-based association tests using GWAS summary statistics. Bioinformatics. 2019; 35(19):3701-3708. DOI: 10.1093/bioinformatics/btz172. View

3.
Peltonen L, Altshuler D, de Bakker P, Deloukas P, Gabriel S, Gwilliam R . Integrating common and rare genetic variation in diverse human populations. Nature. 2010; 467(7311):52-8. PMC: 3173859. DOI: 10.1038/nature09298. View

4.
Marees A, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C . A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int J Methods Psychiatr Res. 2018; 27(2):e1608. PMC: 6001694. DOI: 10.1002/mpr.1608. View

5.
Basu S, Zhang Y, Ray D, Miller M, Iacono W, McGue M . A rapid gene-based genome-wide association test with multivariate traits. Hum Hered. 2013; 76(2):53-63. PMC: 4228787. DOI: 10.1159/000356016. View