» Articles » PMID: 36466118

Hyalocytes in Proliferative Vitreo-retinal Diseases

Overview
Publisher Informa Healthcare
Specialty Ophthalmology
Date 2022 Dec 5
PMID 36466118
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Hyalocytes are sentinel macrophages residing within the posterior vitreous cortex anterior to the retinal inner limiting membrane (ILM). Following anomalous PVD and vitreoschisis, hyalocytes contribute to paucicellular (vitreo-macular traction syndrome, macular holes) and hypercellular (macular pucker, proliferative vitreo-retinopathy, proliferative diabetic vitreo-retinopathy) diseases.

Areas Covered: Studies of human tissues employing dark-field, phase, and electron microscopy; immunohistochemistry; and imaging of human hyalocytes.

Expert Opinion: Hyalocytes are important in early pathophysiology, stimulating cell migration and proliferation, as well as subsequent membrane contraction and vitreo-retinal traction. Targeting hyalocytes early could mitigate advanced disease. Ultimately, eliminating the role of vitreous and hyalocytes may prevent proliferative vitreo-retinal diseases entirely.

Citing Articles

Fibrotic Changes in Rhegmatogenous Retinal Detachment.

Harju N, Kauppinen A, Loukovaara S Int J Mol Sci. 2025; 26(3).

PMID: 39940795 PMC: 11817287. DOI: 10.3390/ijms26031025.


Short-Term Culture of Human Hyalocytes Retains Their Initial Phenotype and Displays Their Contraction Abilities.

Micera A, Balzamino B, Cosimi P, Esposito G, Ripandelli G, Rossi T Cells. 2024; 13(22).

PMID: 39594586 PMC: 11592754. DOI: 10.3390/cells13221837.


The multifaceted role of vitreous hyalocytes: Orchestrating inflammation, angiomodulation and erythrophagocytosis in proliferative diabetic retinopathy.

Boneva S, Wolf J, Jung M, Prinz G, Chui T, Jauch J J Neuroinflammation. 2024; 21(1):297.

PMID: 39543723 PMC: 11566480. DOI: 10.1186/s12974-024-03291-5.


Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body.

Rosmus D, Koch J, Hausmann A, Chiot A, Arnhold F, Masuda T J Neuroinflammation. 2024; 21(1):168.

PMID: 38961498 PMC: 11223341. DOI: 10.1186/s12974-024-03110-x.


Visualizing features with wide-field volumetric OCT angiography.

Hormel T, Liang G, Wei X, Guo Y, Gao M, Wang J Opt Express. 2024; 32(6):10329-10347.

PMID: 38571248 PMC: 11018334. DOI: 10.1364/OE.510640.


References
1.
Wieghofer P, Hagemeyer N, Sankowski R, Schlecht A, Staszewski O, Amann L . Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling. EMBO J. 2021; 40(6):e105123. PMC: 7957431. DOI: 10.15252/embj.2020105123. View

2.
McCarty D, Mukesh B, Chikani V, Wang J, Mitchell P, Taylor H . Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Ophthalmol. 2005; 140(2):288-94. DOI: 10.1016/j.ajo.2005.03.032. View

3.
Wieghofer P, Engelbert M, Chui T, Rosen R, Sakamoto T, Sebag J . Hyalocyte origin, structure, and imaging. Expert Rev Ophthalmol. 2023; 17(4):233-248. PMC: 9831111. DOI: 10.1080/17469899.2022.2100762. View

4.
Kita T, Hata Y, Kano K, Miura M, Nakao S, Noda Y . Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes. 2006; 56(1):231-8. DOI: 10.2337/db06-0581. View

5.
Sebag J, Buzney S, Belyea D, Kado M, McMeel J, Trempe C . Posterior vitreous detachment following panretinal laser photocoagulation. Graefes Arch Clin Exp Ophthalmol. 1990; 228(1):5-8. DOI: 10.1007/BF02764282. View