» Articles » PMID: 36461071

State-level Metabolic Comorbidity Prevalence and Control Among Adults Age 50-plus with Diabetes: Estimates from Electronic Health Records and Survey Data in Five States

Overview
Publisher Biomed Central
Specialty Public Health
Date 2022 Dec 2
PMID 36461071
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Although treatment and control of diabetes can prevent complications and reduce morbidity, few data sources exist at the state level for surveillance of diabetes comorbidities and control. Surveys and electronic health records (EHRs) offer different strengths and weaknesses for surveillance of diabetes and major metabolic comorbidities. Data from self-report surveys suffer from cognitive and recall biases, and generally cannot be used for surveillance of undiagnosed cases. EHR data are becoming more readily available, but pose particular challenges for population estimation since patients are not randomly selected, not everyone has the relevant biomarker measurements, and those included tend to cluster geographically.

Methods: We analyzed data from the National Health and Nutritional Examination Survey, the Health and Retirement Study, and EHR data from the DARTNet Institute to create state-level adjusted estimates of the prevalence and control of diabetes, and the prevalence and control of hypertension and high cholesterol in the diabetes population, age 50 and over for five states: Alabama, California, Florida, Louisiana, and Massachusetts.

Results: The estimates from the two surveys generally aligned well. The EHR data were consistent with the surveys for many measures, but yielded consistently lower estimates of undiagnosed diabetes prevalence, and identified somewhat fewer comorbidities in most states.

Conclusions: Despite these limitations, EHRs may be a promising source for diabetes surveillance and assessment of control as the datasets are large and created during the routine delivery of health care.

Trial Registration: Not applicable.

Citing Articles

US public health surveillance, reimagined.

Guralnik E Learn Health Syst. 2024; 8(4):e10445.

PMID: 39444500 PMC: 11493541. DOI: 10.1002/lrh2.10445.

References
1.
Miller S . The effect of the Massachusetts reform on health care utilization. Inquiry. 2013; 49(4):317-26. DOI: 10.5034/inquiryjrnl_49.04.05. View

2.
Wang J, Geiss L, Cheng Y, Imperatore G, Saydah S, James C . Long-term and recent progress in blood pressure levels among U.S. adults with diagnosed diabetes, 1988-2008. Diabetes Care. 2011; 34(7):1579-81. PMC: 3120172. DOI: 10.2337/dc11-0178. View

3.
Lipman M, Schiffrin E . What is the ideal blood pressure goal for patients with diabetes mellitus and nephropathy?. Curr Cardiol Rep. 2012; 14(6):651-9. DOI: 10.1007/s11886-012-0308-4. View

4.
Thorpe L, McVeigh K, Perlman S, Chan P, Bartley K, Schreibstein L . Monitoring Prevalence, Treatment, and Control of Metabolic Conditions in New York City Adults Using 2013 Primary Care Electronic Health Records: A Surveillance Validation Study. EGEMS (Wash DC). 2017; 4(1):1266. PMC: 5226388. DOI: 10.13063/2327-9214.1266. View

5.
Shah A, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale C . Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2014; 3(2):105-13. PMC: 4303913. DOI: 10.1016/S2213-8587(14)70219-0. View