» Articles » PMID: 36459548

Bioinspired Robot Skin with Mechanically Gated Electron Channels for Sliding Tactile Perception

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 Dec 2
PMID 36459548
Authors
Affiliations
Soon will be listed here.
Abstract

Human-like tactile perception is critical for promoting robotic intelligence. However, reproducing tangential "sliding" perception of human skin is still struggling. Inspired by the lateral gating mechanosensing mechanism of mechanosensory cells, which perceives mechanical stimuli by lateral tension-induced opening-closing of ion channels, we report a robot skin (R-skin) with mechanically gated electron channels, achieving ultrasensitive and fast-response sliding tactile perception via pyramidal artificial fingerprint-triggered opening-closing of electron gates (E-gates, namely, customized V-shaped cracks within embedded mesh electron channels). By imitating cytomembrane to modulate membrane mechanics, local strain is enhanced at E-gates to effectively regulate electron pathways for high sensitivity while weakened at other positions to suppress random cracks for robust stability. The R-skin can directly recognize ultrafine surface microstructure (5 μm) at a response frequency (485 Hz) outshining humans and achieve human-like sliding perception functions, including dexterously distinguishing texture of complex-shaped objects and providing real-time feedback for grasping.

Citing Articles

Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications.

Liu Y, Wang J, Liu T, Wei Z, Luo B, Chi M Nat Commun. 2025; 16(1):383.

PMID: 39753570 PMC: 11698958. DOI: 10.1038/s41467-024-55771-0.


Biomimetic Contact Behavior Inspired Tactile Sensing Array with Programmable Microdomes Pattern by Scalable and Consistent Fabrication.

Chen X, Luo Y, Chen Y, Li S, Deng S, Wang B Adv Sci (Weinh). 2024; 11(43):e2408082.

PMID: 39319637 PMC: 11578381. DOI: 10.1002/advs.202408082.


Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics.

Xu C, Wang Y, Zhang J, Wan J, Xiang Z, Nie Z Sci Adv. 2024; 10(34):eadp6094.

PMID: 39167641 PMC: 11338218. DOI: 10.1126/sciadv.adp6094.


All-Printed Finger-Inspired Tactile Sensor Array for Microscale Texture Detection and 3D Reconstruction.

Wang Y, Zhao J, Zeng X, Huang J, Wen Y, Brugger J Adv Sci (Weinh). 2024; 11(26):e2400479.

PMID: 38696643 PMC: 11234443. DOI: 10.1002/advs.202400479.


Recent Advances in Tactile Sensory Systems: Mechanisms, Fabrication, and Applications.

Xi J, Yang H, Li X, Wei R, Zhang T, Dong L Nanomaterials (Basel). 2024; 14(5).

PMID: 38470794 PMC: 10935336. DOI: 10.3390/nano14050465.


References
1.
An J, Chen P, Wang Z, Berbille A, Pang H, Jiang Y . Biomimetic Hairy Whiskers for Robotic Skin Tactility. Adv Mater. 2021; 33(24):e2101891. DOI: 10.1002/adma.202101891. View

2.
Beker L, Matsuhisa N, You I, Ruth S, Niu S, Foudeh A . A bioinspired stretchable membrane-based compliance sensor. Proc Natl Acad Sci U S A. 2020; 117(21):11314-11320. PMC: 7260970. DOI: 10.1073/pnas.1909532117. View

3.
Yao H, Yang W, Cheng W, Tan Y, See H, Li S . Near-hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proc Natl Acad Sci U S A. 2020; 117(41):25352-25359. PMC: 7568242. DOI: 10.1073/pnas.2010989117. View

4.
Choi E, Sul O, Lee J, Seo H, Kim S, Yeom S . Biomimetic Tactile Sensors with Bilayer Fingerprint Ridges Demonstrating Texture Recognition. Micromachines (Basel). 2019; 10(10). PMC: 6843519. DOI: 10.3390/mi10100642. View

5.
Cao Y, Li T, Gu Y, Luo H, Wang S, Zhang T . Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture. Small. 2018; 14(16):e1703902. DOI: 10.1002/smll.201703902. View