» Articles » PMID: 36456857

Deep Brain Stimulation by Blood-brain-barrier-crossing Piezoelectric Nanoparticles Generating Current and Nitric Oxide Under Focused Ultrasound

Overview
Journal Nat Biomed Eng
Publisher Springer Nature
Date 2022 Dec 1
PMID 36456857
Authors
Affiliations
Soon will be listed here.
Abstract

Deep brain stimulation via implanted electrodes can alleviate neuronal disorders. However, its applicability is constrained by side effects resulting from the insertion of electrodes into the brain. Here, we show that systemically administered piezoelectric nanoparticles producing nitric oxide and generating direct current under high-intensity focused ultrasound can be used to stimulate deep tissue in the brain. The release of nitric oxide temporarily disrupted tight junctions in the blood-brain barrier, allowing for the accumulation of the nanoparticles into brain parenchyma, and the piezoelectrically induced output current stimulated the release of dopamine by dopaminergic neuron-like cells. In a mouse model of Parkinson's disease, the ultrasound-responsive nanoparticles alleviated the symptoms of the disease without causing overt toxicity. The strategy may inspire the development of other minimally invasive therapies for neurodegenerative diseases.

Citing Articles

HDAC4/5 Inhibitor, LMK-235 Improves Animal Voluntary Movement in MPTP-Induced Parkinson's Disease Model.

Lee H, Kim H, Min J, Lee E, Choi D, Choi J Pharmacol Res Perspect. 2025; 13(1):e70057.

PMID: 39806528 PMC: 11729409. DOI: 10.1002/prp2.70057.


Wearable electrodriven switch actively delivers macromolecular drugs to fundus in non-invasive and controllable manners.

Qin X, Shi H, Li H, Chu B, Zhang J, Wen Z Nat Commun. 2025; 16(1):33.

PMID: 39747871 PMC: 11695998. DOI: 10.1038/s41467-024-55336-1.


A review of temporal interference, nanoparticles, ultrasound, gene therapy, and designer receptors for Parkinson disease.

Currie A, Wong J, Okun M NPJ Parkinsons Dis. 2024; 10(1):195.

PMID: 39443513 PMC: 11500395. DOI: 10.1038/s41531-024-00804-0.


Understanding Osaka mutation polymorphic Aβ fibril response to static and oscillating electric fields: insights from computational modeling.

Makhkamov M, Baev A, Kurganov E, Razzokov J Sci Rep. 2024; 14(1):22246.

PMID: 39333193 PMC: 11436846. DOI: 10.1038/s41598-024-72778-1.


Piezoelectric biomaterials for neural tissue engineering.

Xu D, Zhang H, Wang Y, Zhang Y, Ye F, Lu L Smart Med. 2024; 2(2):e20230002.

PMID: 39188278 PMC: 11235970. DOI: 10.1002/SMMD.20230002.


References
1.
Wyss-Coray T . Ageing, neurodegeneration and brain rejuvenation. Nature. 2016; 539(7628):180-186. PMC: 5172605. DOI: 10.1038/nature20411. View

2.
Kringelbach M, Jenkinson N, Owen S, Aziz T . Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007; 8(8):623-35. DOI: 10.1038/nrn2196. View

3.
Chen R, Canales A, Anikeeva P . Neural Recording and Modulation Technologies. Nat Rev Mater. 2019; 2(2). PMC: 6707077. DOI: 10.1038/natrevmats.2016.93. View

4.
Chen R, Romero G, Christiansen M, Mohr A, Anikeeva P . Wireless magnetothermal deep brain stimulation. Science. 2015; 347(6229):1477-80. DOI: 10.1126/science.1261821. View

5.
Guduru R, Liang P, Hong J, Rodzinski A, Hadjikhani A, Horstmyer J . Magnetoelectric 'spin' on stimulating the brain. Nanomedicine (Lond). 2015; 10(13):2051-61. PMC: 4910966. DOI: 10.2217/nnm.15.52. View