» Articles » PMID: 36425618

Extending Field-of-view of Retinal Imaging by Optical Coherence Tomography Using Convolutional Lissajous and Slow Scan Patterns

Overview
Specialty Radiology
Date 2022 Nov 25
PMID 36425618
Authors
Affiliations
Soon will be listed here.
Abstract

Optical coherence tomography (OCT) is a high-speed non-invasive cross-sectional imaging technique. Although its imaging speed is high, three-dimensional high-spatial-sampling-density imaging of tissues with a wide field-of-view (FOV) is challenging. We employed convolved Lissajous and slow circular scanning patterns to extend the FOV of retinal OCT imaging with a 1-µm, 100-kHz-sweep-rate swept-source OCT prototype system. Displacements of sampling points due to eye movements are corrected by post-processing based on a Lissajous scan. Wide FOV three-dimensional retinal imaging with high sampling density and motion correction is achieved. Three-dimensional structures obtained using repeated imaging sessions of a healthy volunteer and two patients showed good agreement. The demonstrated technique will extend the FOV of simple point-scanning OCT, such as commercial ophthalmic OCT devices, without sacrificing sampling density.

Citing Articles

Non-destructive viability assessment of cancer cell spheroids using dynamic optical coherence tomography with trypan blue validation.

Tan K, Ang J, Yong A, Lim S, Kng J, Liang K Biomed Opt Express. 2024; 15(11):6370-6383.

PMID: 39553864 PMC: 11563335. DOI: 10.1364/BOE.533339.


Panretinal handheld OCT angiography for pediatric retinal imaging.

Ni S, Liang G, Ng R, Ostmo S, Jia Y, Chiang M Biomed Opt Express. 2024; 15(5):3412-3424.

PMID: 38855676 PMC: 11161374. DOI: 10.1364/BOE.520739.


Megahertz multi-parametric ophthalmic OCT system for whole eye imaging.

Hu Y, Feng Y, Long X, Zheng D, Liu G, Lu Y Biomed Opt Express. 2024; 15(5):3000-3017.

PMID: 38855668 PMC: 11161356. DOI: 10.1364/BOE.517757.


Extended and adjustable field-of-view of variable interscan time analysis by ammonite-scanning swept-source optical coherence tomography angiography.

Mino T, Moriguchi Y, Tamura M, Matsumoto A, Kubota A, Akiba M Biomed Opt Express. 2023; 14(8):4112-4125.

PMID: 37799706 PMC: 10549733. DOI: 10.1364/BOE.491611.


Panretinal Optical Coherence Tomography.

Ni S, Nguyen T, Ng R, Woodward M, Ostmo S, Jia Y IEEE Trans Med Imaging. 2023; 42(11):3219-3228.

PMID: 37216244 PMC: 10615839. DOI: 10.1109/TMI.2023.3278269.

References
1.
Chen Y, Hong Y, Makita S, Yasuno Y . Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning. Biomed Opt Express. 2018; 9(3):1111-1129. PMC: 5846517. DOI: 10.1364/BOE.9.001111. View

2.
Bowers N, Boehm A, Roorda A . The effects of fixational tremor on the retinal image. J Vis. 2019; 19(11):8. PMC: 6750810. DOI: 10.1167/19.11.8. View

3.
Hillmann D, Spahr H, Pfaffle C, Sudkamp H, Franke G, Huttmann G . In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci U S A. 2016; 113(46):13138-13143. PMC: 5135337. DOI: 10.1073/pnas.1606428113. View

4.
Zhang Q, Huang Y, Zhang T, Kubach S, An L, Laron M . Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. J Biomed Opt. 2015; 20(6):066008. PMC: 4478052. DOI: 10.1117/1.JBO.20.6.066008. View

5.
Ko H, Snodderly D, Poletti M . Eye movements between saccades: Measuring ocular drift and tremor. Vision Res. 2016; 122:93-104. PMC: 4861686. DOI: 10.1016/j.visres.2016.03.006. View