» Articles » PMID: 36408944

Identification of Ester-linked Ubiquitylation Sites During TLR7 Signalling Increases the Number of Inter-ubiquitin Linkages from 8 to 12

Overview
Journal Biochem J
Specialty Biochemistry
Date 2022 Nov 21
PMID 36408944
Authors
Affiliations
Soon will be listed here.
Abstract

The E3 ligase HOIL-1 forms ester bonds in vitro between ubiquitin and serine/threonine residues in proteins. Here, we exploit UbiSite technology to identify serine and threonine residues undergoing HOIL-1 catalysed ubiquitylation in macrophages stimulated with R848, an activator of the TLR7/8 heterodimer. We identify Thr12, Thr14, Ser20 and Thr22 of ubiquitin as amino acid residues forming ester bonds with the C-terminal carboxylate of another ubiquitin molecule. This increases from 8 to 12 the number of ubiquitin linkage types that are formed in cells. We also identify Ser175 of IRAK4, Ser136, Thr163 and Ser168 of IRAK2 and Thr141 of MyD88 as further sites of HOIL-1-catalysed ubiquitylation together with lysine residues in these proteins that also undergo R848-dependent ubiquitylation. These findings establish that the ubiquitin chains attached to components of myddosomes are initiated by both ester and isopeptide bonds. Ester bond formation takes place within the proline, serine, threonine-rich (PST) domains of IRAK2 and IRAK4 and the intermediate domain of MyD88. The ubiquitin molecules attached to Lys162, Thr163 and Ser168 of IRAK2 are attached to different IRAK2 molecules.

Citing Articles

Ubiquitin is directly linked via an ester to protein-conjugated mono-ADP-ribose.

Bejan D, Lacoursiere R, Pruneda J, Cohen M EMBO J. 2025; .

PMID: 40000907 DOI: 10.1038/s44318-025-00391-7.


The emerging roles of non-canonical ubiquitination in proteostasis and beyond.

Akizuki Y, Kaypee S, Ohtake F, Ikeda F J Cell Biol. 2024; 223(5).

PMID: 38517379 PMC: 10959754. DOI: 10.1083/jcb.202311171.


Deciphering non-canonical ubiquitin signaling: biology and methodology.

van Overbeek N, Aguirre T, van der Heden van Noort G, Blagoev B, Vertegaal A Front Mol Biosci. 2024; 10:1332872.

PMID: 38414868 PMC: 10897730. DOI: 10.3389/fmolb.2023.1332872.


Just how big is the ubiquitin system?.

Lechtenberg B, Komander D Nat Struct Mol Biol. 2024; 31(2):210-213.

PMID: 38347149 DOI: 10.1038/s41594-023-01208-z.


Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system.

Roberts C, Franklin T, Pruneda J EMBO J. 2023; 42(18):e114318.

PMID: 37555693 PMC: 10505922. DOI: 10.15252/embj.2023114318.

References
1.
Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal D, Shah R . Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun. 2022; 13(1):2736. PMC: 9117253. DOI: 10.1038/s41467-022-30376-7. View

2.
Lo Y, Lin S, Rospigliosi C, Conze D, Wu C, Ashwell J . Structural basis for recognition of diubiquitins by NEMO. Mol Cell. 2009; 33(5):602-15. PMC: 2749619. DOI: 10.1016/j.molcel.2009.01.012. View

3.
Strickson S, Emmerich C, Goh E, Zhang J, Kelsall I, Macartney T . Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A. 2017; 114(17):E3481-E3489. PMC: 5410814. DOI: 10.1073/pnas.1702367114. View

4.
Rodriguez Carvajal A, Grishkovskaya I, Gomez Diaz C, Vogel A, Sonn-Segev A, Kushwah M . The linear ubiquitin chain assembly complex (LUBAC) generates heterotypic ubiquitin chains. Elife. 2021; 10. PMC: 8245127. DOI: 10.7554/eLife.60660. View

5.
Wang C, Deng L, Hong M, Akkaraju G, Inoue J, Chen Z . TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001; 412(6844):346-51. DOI: 10.1038/35085597. View