» Articles » PMID: 36396629

Spectral Control of Nonclassical Light Pulses Using an Integrated Thin-film Lithium Niobate Modulator

Overview
Journal Light Sci Appl
Publisher Springer Nature
Date 2022 Nov 17
PMID 36396629
Authors
Affiliations
Soon will be listed here.
Abstract

Manipulating the frequency and bandwidth of nonclassical light is essential for implementing frequency-encoded/multiplexed quantum computation, communication, and networking protocols, and for bridging spectral mismatch among various quantum systems. However, quantum spectral control requires a strong nonlinearity mediated by light, microwave, or acoustics, which is challenging to realize with high efficiency, low noise, and on an integrated chip. Here, we demonstrate both frequency shifting and bandwidth compression of heralded single-photon pulses using an integrated thin-film lithium niobate (TFLN) phase modulator. We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range (±641 GHz or ±5.2 nm), enabling high visibility quantum interference between frequency-nondegenerate photon pairs. We further operate the modulator as a time lens and demonstrate over eighteen-fold (6.55 nm to 0.35 nm) bandwidth compression of single photons. Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.

Citing Articles

A thin film lithium niobate near-infrared platform for multiplexing quantum nodes.

Assumpcao D, Renaud D, Baradari A, Zeng B, De-Eknamkul C, Xin C Nat Commun. 2024; 15(1):10459.

PMID: 39622814 PMC: 11612428. DOI: 10.1038/s41467-024-54541-2.


Quantum and coherent signal transmission on a single-frequency channel via the electro-optic serrodyne technique.

Rubeling P, Heine J, Johanning R, Kues M Sci Adv. 2024; 10(30):eadn8907.

PMID: 39058776 PMC: 11277375. DOI: 10.1126/sciadv.adn8907.


Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators.

Renaud D, Assumpcao D, Joe G, Shams-Ansari A, Zhu D, Hu Y Nat Commun. 2023; 14(1):1496.

PMID: 36973272 PMC: 10042872. DOI: 10.1038/s41467-023-36870-w.

References
1.
Avenhaus M, Eckstein A, Mosley P, Silberhorn C . Fiber-assisted single-photon spectrograph. Opt Lett. 2009; 34(18):2873-5. DOI: 10.1364/OL.34.002873. View

2.
Chen C, Heyes J, Shapiro J, Wong F . Single-photon frequency shifting with a quadrature phase-shift keying modulator. Sci Rep. 2021; 11(1):300. PMC: 7801464. DOI: 10.1038/s41598-020-79511-8. View

3.
Kues M, Reimer C, Roztocki P, Romero Cortes L, Sciara S, Wetzel B . On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature. 2017; 546(7660):622-626. DOI: 10.1038/nature22986. View

4.
Zhao T, Zhang H, Yang J, Sang Z, Jiang X, Bao X . Entangling different-color photons via time-resolved measurement and active feed forward. Phys Rev Lett. 2014; 112(10):103602. DOI: 10.1103/PhysRevLett.112.103602. View

5.
Lomonte E, Wolff M, Beutel F, Ferrari S, Schuck C, Pernice W . Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat Commun. 2021; 12(1):6847. PMC: 8617300. DOI: 10.1038/s41467-021-27205-8. View