» Articles » PMID: 36386330

β-sitosterol Inhibits Trimethylamine Production by Regulating the Gut Microbiota and Attenuates Atherosclerosis in ApoE Mice

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

The intestinal microbial metabolite trimethylamine (TMA), which is activated by flavin monooxygenase (FMO) to produce trimethylamine--oxide (TMAO), has been implicated in the pathogenesis of atherosclerosis (AS), leading to the development of therapeutic strategies for AS. This study aimed to investigate whether β-sitosterol can inhibit TMA production in ApoE mice by reshaping the gut microbial structure. 16S rRNA sequencing of the gut microbiota showed that β-sitosterol has beneficial effects on intestinal flora function, especially the inhibition of bacteria genera that contain the gene cholintrimethylamine lyase, which is responsible for the major pathway for TMA production. In parallel, β-sitosterol effectively reduced the TMA, FMO3, and TMAO levels while ameliorating the atherosclerotic plaques of AS mice. Moreover, β-sitosterol could alleviate cholesterol metabolism and the inflammatory response, and improve the antioxidant defense capacity. These studies offer new insights into the mechanisms responsible for the antiatherosclerotic effects of β-sitosterol, which targets the microbiota-metabolism-immunity axis as a possible therapy for AS.

Citing Articles

Network pharmacology and molecular docking identified IL-6 as a critical target of Qing Yan He Ji against COVID-19.

Xiong L, Chen Q, Liu H Medicine (Baltimore). 2024; 103(48):e40720.

PMID: 39612422 PMC: 11608737. DOI: 10.1097/MD.0000000000040720.


Searching for Hub Genes of Quince-Basil Co-Administration Against Atherosclerosis Using Bioinformatics Analysis and Experimental Validation.

Hailati S, Han M, Dilimulati D, Nueraihemaiti N, Baishan A, Aikebaier A Pharmaceuticals (Basel). 2024; 17(11).

PMID: 39598345 PMC: 11597616. DOI: 10.3390/ph17111433.


Study on the Anti-Atherosclerotic Mechanisms of Xin-Tong-Tai Granule Through Network Pharmacology, Molecular Docking, and Experimental Validation.

Zhu J, Wang Z, Liu C, Shi M, Guo Z, Li Y J Inflamm Res. 2024; 17:8147-8164.

PMID: 39525320 PMC: 11545721. DOI: 10.2147/JIR.S490815.


β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy.

Yang S, Zhang Y, Zheng C Cell Biochem Biophys. 2024; 83(1):1249-1262.

PMID: 39424766 DOI: 10.1007/s12013-024-01559-4.


Immune Implications of Cholesterol-Containing Lipid Nanoparticles.

Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam M ACS Nano. 2024; 18(42):28480-28501.

PMID: 39388645 PMC: 11505898. DOI: 10.1021/acsnano.4c06369.


References
1.
Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T . Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018; 17(1):286. PMC: 6300890. DOI: 10.1186/s12944-018-0939-6. View

2.
Yu Y, Cao Y, Huang W, Liu Y, Lu Y, Zhao J . β-Sitosterol Ameliorates Endometrium Receptivity in PCOS-Like Mice: The Mediation of Gut Microbiota. Front Nutr. 2021; 8:667130. PMC: 8224531. DOI: 10.3389/fnut.2021.667130. View

3.
Geng J, Yang C, Wang B, Zhang X, Hu T, Gu Y . Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother. 2017; 97:941-947. DOI: 10.1016/j.biopha.2017.11.016. View

4.
Sampson U, Fazio S, Linton M . Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep. 2011; 14(1):1-10. PMC: 3697085. DOI: 10.1007/s11883-011-0219-7. View

5.
Cai Y, Huang F, Lao X, Lu Y, Gao X, Alolga R . Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. NPJ Biofilms Microbiomes. 2022; 8(1):11. PMC: 8913745. DOI: 10.1038/s41522-022-00273-4. View