» Articles » PMID: 36384590

Neoantigen-specific TCR-T Cell-based Immunotherapy for Acute Myeloid Leukemia

Overview
Publisher Biomed Central
Specialty Hematology
Date 2022 Nov 17
PMID 36384590
Authors
Affiliations
Soon will be listed here.
Abstract

Neoantigens derived from non-synonymous somatic mutations are restricted to malignant cells and are thus considered ideal targets for T cell receptor (TCR)-based immunotherapy. Adoptive transfer of T cells bearing neoantigen-specific TCRs exhibits the ability to preferentially target tumor cells while remaining harmless to normal cells. High-avidity TCRs specific for neoantigens expressed on AML cells have been identified in vitro and verified using xenograft mouse models. Preclinical studies of these neoantigen-specific TCR-T cells are underway and offer great promise as safe and effective therapies. Additionally, TCR-based immunotherapies targeting tumor-associated antigens are used in early-phase clinical trials for the treatment of AML and show encouraging anti-leukemic effects. These clinical experiences support the application of TCR-T cells that are specifically designed to recognize neoantigens. In this review, we will provide a detailed profile of verified neoantigens in AML, describe the strategies to identify neoantigen-specific TCRs, and discuss the potential of neoantigen-specific T-cell-based immunotherapy in AML.

Citing Articles

A therapeutic regimen using neoantigen-specific TCR-T cells for HLA-A*2402-positive solid tumors.

Bei Y, Huang Y, Wu N, Li Y, Xu R, Liu B EMBO Mol Med. 2025; 17(2):365-383.

PMID: 39748060 PMC: 11821884. DOI: 10.1038/s44321-024-00184-1.


Molecular mimicry as a mechanism of viral immune evasion and autoimmunity.

Maguire C, Wang C, Ramasamy A, Fonken C, Morse B, Lopez N Nat Commun. 2024; 15(1):9403.

PMID: 39477943 PMC: 11526117. DOI: 10.1038/s41467-024-53658-8.


Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia.

Kheirkhah A, Habibi S, Yousefi M, Mehri S, Ma B, Saleh M Front Immunol. 2024; 15:1460437.

PMID: 39411712 PMC: 11474923. DOI: 10.3389/fimmu.2024.1460437.


Breaking Boundaries: Immunotherapy for Myeloid Malignancies.

Gavrilova T, Schulz E, Mina A Cancers (Basel). 2024; 16(16).

PMID: 39199554 PMC: 11352449. DOI: 10.3390/cancers16162780.


Tumor-Derived Antigenic Peptides as Potential Cancer Vaccines.

Sotirov S, Dimitrov I Int J Mol Sci. 2024; 25(9).

PMID: 38732150 PMC: 11084719. DOI: 10.3390/ijms25094934.


References
1.
RAMMENSEE H, Bachmann J, Emmerich N, Bachor O, Stevanovic S . SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999; 50(3-4):213-9. DOI: 10.1007/s002510050595. View

2.
Fernandez-Poma S, Salas-Benito D, Lozano T, Casares N, Riezu-Boj J, Mancheno U . Expansion of Tumor-Infiltrating CD8 T cells Expressing PD-1 Improves the Efficacy of Adoptive T-cell Therapy. Cancer Res. 2017; 77(13):3672-3684. DOI: 10.1158/0008-5472.CAN-17-0236. View

3.
McMahon C, Ferng T, Canaani J, Wang E, Morrissette J, Eastburn D . Clonal Selection with RAS Pathway Activation Mediates Secondary Clinical Resistance to Selective FLT3 Inhibition in Acute Myeloid Leukemia. Cancer Discov. 2019; 9(8):1050-1063. DOI: 10.1158/2159-8290.CD-18-1453. View

4.
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D . RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011; 11(11):761-74. PMC: 3632399. DOI: 10.1038/nrc3106. View

5.
Simoni Y, Becht E, Fehlings M, Loh C, Koo S, Teng K . Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018; 557(7706):575-579. DOI: 10.1038/s41586-018-0130-2. View