» Articles » PMID: 36379849

Epigenetic Regulation of Bone Remodeling and Bone Metastasis

Overview
Date 2022 Nov 15
PMID 36379849
Authors
Affiliations
Soon will be listed here.
Abstract

Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.

Citing Articles

Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder.

Liu Q, Xue Y, Guo J, Tao L, Zhu Y Front Endocrinol (Lausanne). 2025; 15:1512398.

PMID: 39886032 PMC: 11779597. DOI: 10.3389/fendo.2024.1512398.


New insights into non-small cell lung cancer bone metastasis: mechanisms and therapies.

Xue M, Ma L, Zhang P, Yang H, Wang Z Int J Biol Sci. 2024; 20(14):5747-5763.

PMID: 39494330 PMC: 11528464. DOI: 10.7150/ijbs.100960.


Krüppel-like factors family in health and disease.

Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y MedComm (2020). 2024; 5(9):e723.

PMID: 39263604 PMC: 11387732. DOI: 10.1002/mco2.723.


The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis.

Jimenez-Ortega R, Ortega-Melendez A, Patino N, Rivera-Paredez B, Hidalgo-Bravo A, Velazquez-Cruz R Biology (Basel). 2024; 13(7).

PMID: 39056698 PMC: 11273958. DOI: 10.3390/biology13070505.


[Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling].

Lan Y, Yu L, Hu Z, Zou S Sichuan Da Xue Xue Bao Yi Xue Ban. 2024; 55(2):263-272.

PMID: 38645873 PMC: 11026875. DOI: 10.12182/20240360301.