Zhang J, Li F, Chen W, Li Y, Zhang Z, Hua R
Emerg Microbes Infect. 2025; 14(1):2469636.
PMID: 39964030
PMC: 11881660.
DOI: 10.1080/22221751.2025.2469636.
Venkateswaran D, Prakash A, Nguyen Q, Salman M, Suntisukwattana R, Atthaapa W
Animals (Basel). 2024; 14(15).
PMID: 39123713
PMC: 11311002.
DOI: 10.3390/ani14152187.
Hu Y, Wu G, Jia Q, Zhang B, Sun W, Sa R
Front Immunol. 2024; 15:1408510.
PMID: 39021566
PMC: 11252532.
DOI: 10.3389/fimmu.2024.1408510.
Yin D, Shi B, Geng R, Liu Y, Gong L, Shao H
Virol Sin. 2024; 39(3):469-477.
PMID: 38789040
PMC: 11279770.
DOI: 10.1016/j.virs.2024.05.007.
Gao S, Zuo W, Kang C, Zou Z, Zhang K, Qiu J
Front Immunol. 2024; 15:1373656.
PMID: 38742108
PMC: 11089227.
DOI: 10.3389/fimmu.2024.1373656.
Nanobodies against African swine fever virus p72 and CD2v proteins as reagents for developing two cELISAs to detect viral antibodies.
Zhu J, Liu Q, Li L, Zhang R, Chang Y, Zhao J
Virol Sin. 2024; 39(3):478-489.
PMID: 38588947
PMC: 11280129.
DOI: 10.1016/j.virs.2024.04.002.
A porcine kidney-derived clonal cell line with clear genetic annotation is highly susceptible to African swine fever virus.
Cao H, Zhang M, Liao Z, Li D, He X, Ma H
Vet Res. 2024; 55(1):42.
PMID: 38575961
PMC: 10996120.
DOI: 10.1186/s13567-024-01300-2.
On-site detection and differentiation of African swine fever virus variants using an orthogonal CRISPR-Cas12b/Cas13a-based assay.
Wang Z, Wang Y, Zhang Y, Qin G, Sun W, Wang A
iScience. 2024; 27(4):109050.
PMID: 38571763
PMC: 10987800.
DOI: 10.1016/j.isci.2024.109050.
Deletion of the EP402R Gene from the Genome of African Swine Fever Vaccine Strain ASFV-G-∆I177L Provides the Potential Capability of Differentiating between Infected and Vaccinated Animals.
Borca M, Ramirez-Medina E, Espinoza N, Rai A, Spinard E, Velazquez-Salinas L
Viruses. 2024; 16(3).
PMID: 38543742
PMC: 10974803.
DOI: 10.3390/v16030376.
Identification of and as virulence-related genes in the African swine fever virus genome.
Fan J, Zhang J, Wang F, Miao F, Zhang H, Jiang Y
Front Microbiol. 2024; 15:1345236.
PMID: 38328426
PMC: 10848158.
DOI: 10.3389/fmicb.2024.1345236.
Mineralization Reduces the Toxicity and Improves Stability and Protective Immune Response Induced by .
Li L, Guan Y, Bai S, Jin Q, Tao J, Zhu G
Vaccines (Basel). 2024; 12(1).
PMID: 38250848
PMC: 10819335.
DOI: 10.3390/vaccines12010035.
Triplex Crystal Digital PCR for the Detection and Differentiation of the Wild-Type Strain and the MGF505-2R and I177L Gene-Deleted Strain of African Swine Fever Virus.
Shi K, Zhao K, Wei H, Zhou Q, Shi Y, Mo S
Pathogens. 2023; 12(9).
PMID: 37764900
PMC: 10534775.
DOI: 10.3390/pathogens12091092.
Mucosal and cellular immune responses elicited by nasal and intramuscular inoculation with ASFV candidate immunogens.
Xu L, Hao F, Jeong D, Chen R, Gan Y, Zhang L
Front Immunol. 2023; 14:1200297.
PMID: 37720232
PMC: 10502713.
DOI: 10.3389/fimmu.2023.1200297.
Immunization of pigs with replication-incompetent adenovirus-vectored African swine fever virus multi-antigens induced humoral immune responses but no protection following contact challenge.
Zajac M, Trujillo J, Yao J, Kumar R, Sangewar N, Lokhandwala S
Front Vet Sci. 2023; 10:1208275.
PMID: 37404778
PMC: 10316028.
DOI: 10.3389/fvets.2023.1208275.
Evaluation of humoral and cellular immune responses induced by a cocktail of recombinant African swine fever virus antigens fused with OprI in domestic pigs.
Zhang G, Liu W, Yang S, Song S, Ma Y, Zhou G
Virol J. 2023; 20(1):104.
PMID: 37237390
PMC: 10224232.
DOI: 10.1186/s12985-023-02070-7.
Combinational Deletions of and Genes from the African Swine Fever Virus Inhibit TBK1 Degradation by an Autophagy Activator PIK3C2B To Promote Type I Interferon Production.
Zhu G, Ren J, Li D, Ru Y, Qin X, Feng T
J Virol. 2023; 97(5):e0022823.
PMID: 37162350
PMC: 10231249.
DOI: 10.1128/jvi.00228-23.
Summary of the Current Status of African Swine Fever Vaccine Development in China.
Han N, Qu H, Xu T, Hu Y, Zhang Y, Ge S
Vaccines (Basel). 2023; 11(4).
PMID: 37112673
PMC: 10145671.
DOI: 10.3390/vaccines11040762.