» Articles » PMID: 36374909

Structure Learning Enhances Concept Formation in Synthetic Active Inference Agents

Overview
Journal PLoS One
Date 2022 Nov 14
PMID 36374909
Authors
Affiliations
Soon will be listed here.
Abstract

Humans display astonishing skill in learning about the environment in which they operate. They assimilate a rich set of affordances and interrelations among different elements in particular contexts, and form flexible abstractions (i.e., concepts) that can be generalised and leveraged with ease. To capture these abilities, we present a deep hierarchical Active Inference model of goal-directed behaviour, and the accompanying belief update schemes implied by maximising model evidence. Using simulations, we elucidate the potential mechanisms that underlie and influence concept learning in a spatial foraging task. We show that the representations formed-as a result of foraging-reflect environmental structure in a way that is enhanced and nuanced by Bayesian model reduction, a special case of structure learning that typifies learning in the absence of new evidence. Synthetic agents learn associations and form concepts about environmental context and configuration as a result of inferential, parametric learning, and structure learning processes-three processes that can produce a diversity of beliefs and belief structures. Furthermore, the ensuing representations reflect symmetries for environments with identical configurations.

Citing Articles

Introducing ActiveInference.jl: A Julia Library for Simulation and Parameter Estimation with Active Inference Models.

Nehrer S, Ehrenreich Laursen J, Heins C, Friston K, Mathys C, Thestrup Waade P Entropy (Basel). 2025; 27(1).

PMID: 39851682 PMC: 11765463. DOI: 10.3390/e27010062.


Learning dynamic cognitive map with autonomous navigation.

de Tinguy D, Verbelen T, Dhoedt B Front Comput Neurosci. 2024; 18:1498160.

PMID: 39723170 PMC: 11668591. DOI: 10.3389/fncom.2024.1498160.


Spatial and Temporal Hierarchy for Autonomous Navigation Using Active Inference in Minigrid Environment.

de Tinguy D, Van de Maele T, Verbelen T, Dhoedt B Entropy (Basel). 2024; 26(1).

PMID: 38248208 PMC: 11154534. DOI: 10.3390/e26010083.


A model of time-varying music engagement.

Omigie D, Mencke I Philos Trans R Soc Lond B Biol Sci. 2023; 379(1895):20220421.

PMID: 38104598 PMC: 10725767. DOI: 10.1098/rstb.2022.0421.


A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network.

Zarghami T Brain Struct Funct. 2023; 228(8):1917-1941.

PMID: 37658184 DOI: 10.1007/s00429-023-02697-w.

References
1.
Parr T, Friston K . Uncertainty, epistemics and active inference. J R Soc Interface. 2017; 14(136). PMC: 5721148. DOI: 10.1098/rsif.2017.0376. View

2.
Luo J, Niki K . Function of hippocampus in "insight" of problem solving. Hippocampus. 2003; 13(3):316-23. DOI: 10.1002/hipo.10069. View

3.
Barsalou L . Ad hoc categories. Mem Cognit. 1983; 11(3):211-27. DOI: 10.3758/bf03196968. View

4.
Penny W . Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage. 2011; 59(1):319-30. PMC: 3200437. DOI: 10.1016/j.neuroimage.2011.07.039. View

5.
Zeithamova D, Mack M, Braunlich K, Davis T, Seger C, van Kesteren M . Brain Mechanisms of Concept Learning. J Neurosci. 2019; 39(42):8259-8266. PMC: 6794919. DOI: 10.1523/JNEUROSCI.1166-19.2019. View