» Articles » PMID: 36354876

Harmonization Strategies in Multicenter MRI-Based Radiomics

Overview
Journal J Imaging
Publisher MDPI
Specialty Radiology
Date 2022 Nov 10
PMID 36354876
Authors
Affiliations
Soon will be listed here.
Abstract

Radiomics analysis is a powerful tool aiming to provide diagnostic and prognostic patient information directly from images that are decoded into handcrafted features, comprising descriptors of shape, size and textural patterns. Although radiomics is gaining momentum since it holds great promise for accelerating digital diagnostics, it is susceptible to bias and variation due to numerous inter-patient factors (e.g., patient age and gender) as well as inter-scanner ones (different protocol acquisition depending on the scanner center). A variety of image and feature based harmonization methods has been developed to compensate for these effects; however, to the best of our knowledge, none of these techniques has been established as the most effective in the analysis pipeline so far. To this end, this review provides an overview of the challenges in optimizing radiomics analysis, and a concise summary of the most relevant harmonization techniques, aiming to provide a thorough guide to the radiomics harmonization process.

Citing Articles

Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data.

Shen G, Zhu Y, Li M, McNaughton R, Jara H, Andersson S ArXiv. 2025; .

PMID: 40034133 PMC: 11875279.


A Comprehensive Evaluation of Radiomic Features in Normal Brain Magnetic Resonance Imaging: Investigating Robustness and Region Variations.

Shakeri M, Mostaar A, Sadeghi A, Hosseini S, Joybari A, Ghadiri H J Med Phys. 2025; 49(4):608-622.

PMID: 39926136 PMC: 11801087. DOI: 10.4103/jmp.jmp_149_24.


The potential of GPT-4 advanced data analysis for radiomics-based machine learning models.

Foltyn-Dumitru M, Rastogi A, Cho J, Schell M, Mahmutoglu M, Kessler T Neurooncol Adv. 2025; 7(1):vdae230.

PMID: 39780768 PMC: 11707530. DOI: 10.1093/noajnl/vdae230.


ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.

Santinha J, Pinto Dos Santos D, Laqua F, Visser J, Groot Lipman K, Dietzel M Eur Radiol. 2024; 35(3):1122-1132.

PMID: 39453470 PMC: 11835989. DOI: 10.1007/s00330-024-11093-9.


Deep feature batch correction using ComBat for machine learning applications in computational pathology.

Murchan P, Broin P, Baird A, Sheils O, Finn S J Pathol Inform. 2024; 15:100396.

PMID: 39398947 PMC: 11470259. DOI: 10.1016/j.jpi.2024.100396.


References
1.
da Silva G, Diniz P, Ferreira J, Franca J, Silva A, de Paiva A . Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput. 2020; 58(9):1947-1964. DOI: 10.1007/s11517-020-02199-5. View

2.
Traverso A, Wee L, Dekker A, Gillies R . Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys. 2018; 102(4):1143-1158. PMC: 6690209. DOI: 10.1016/j.ijrobp.2018.05.053. View

3.
Ortiz-Ramon R, Larroza A, Ruiz-Espana S, Arana E, Moratal D . Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur Radiol. 2018; 28(11):4514-4523. DOI: 10.1007/s00330-018-5463-6. View

4.
Saleem H, Shahid A, Raza B . Visual interpretability in 3D brain tumor segmentation network. Comput Biol Med. 2021; 133:104410. DOI: 10.1016/j.compbiomed.2021.104410. View

5.
Kocher M, Ruge M, Galldiks N, Lohmann P . Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther Onkol. 2020; 196(10):856-867. PMC: 7498494. DOI: 10.1007/s00066-020-01626-8. View