» Articles » PMID: 36349266

Deciphering and Reprogramming the Cyclization Regioselectivity in Bifurcation of Indole Alkaloid Biosynthesis

Overview
Journal Chem Sci
Specialty Chemistry
Date 2022 Nov 9
PMID 36349266
Authors
Affiliations
Soon will be listed here.
Abstract

The metabolism of monoterpene indole alkaloids (MIAs) is an outstanding example of how plants shape chemical diversity from a single precursor. Here we report the discovery of novel enzymes from the tree, a cytochrome P450, an NADPH dependent oxidoreductase and a BAHD acyltransferase that together synthesize the indole alkaloid akuammiline with a unique methanoquinolizidine cage structure. The two paralogous cytochrome P450 enzymes rhazimal synthase (AsRHS) and geissoschizine oxidase (AsGO) catalyse the cyclization of the common precursor geissoschizine and they direct the MIA metabolism towards to the two structurally distinct and medicinally important MIA classes of and alkaloids, respectively. To understand the pathway divergence, we investigated the catalytic mechanism of the two P450 enzymes by homology modelling and reciprocal mutations. Upon conducting mutant enzyme assays, we identified a single amino acid residue that mediates the space in active sites, switches the enzymatic reaction outcome and impacts the cyclization regioselectivity. Our results represent a significant advance in MIA metabolism, paving the way for discovery of downstream genes in alkaloid biosynthesis and facilitating future synthetic biology applications. We anticipate that our work presents, for the first time, insights at the molecular level for plant P450 catalytic activity with a significant key role in the diversification of alkaloid metabolism, and provides the basis for designing new drugs.

Citing Articles

Unraveling the specialized metabolic pathways in medicinal plant genomes: a review.

Wang M, Zhang S, Li R, Zhao Q Front Plant Sci. 2025; 15():1459533.

PMID: 39777086 PMC: 11703845. DOI: 10.3389/fpls.2024.1459533.


An attempted oxidative coupling approach to the scholarinine A framework.

Jones K, Lara F, Zavesky B, Sarpong R Tetrahedron Lett. 2024; 138.

PMID: 39687046 PMC: 11649313. DOI: 10.1016/j.tetlet.2024.154980.


Oxidation of four monoterpenoid indole alkaloid classes by three cytochrome P450 monooxygenases from Tabernaemontana litoralis.

Mai Z, Kim K, Richardson M, Deschenes D, Garza-Garcia J, Shahsavarani M Plant J. 2024; 120(6):2770-2783.

PMID: 39569755 PMC: 11658178. DOI: 10.1111/tpj.17145.


Cutting-edge plant natural product pathway elucidation.

Han J, Miller E, Li S Curr Opin Biotechnol. 2024; 87:103137.

PMID: 38677219 PMC: 11192039. DOI: 10.1016/j.copbio.2024.103137.


Chromosome-level genome unveils evolutionary insights into biosynthesis of monoterpenoid indole alkaloids.

Chen H, Sahu S, Wang S, Liu J, Yang J, Cheng L iScience. 2024; 27(5):109599.

PMID: 38646178 PMC: 11033161. DOI: 10.1016/j.isci.2024.109599.


References
1.
Eckermann R, Breunig M, Gaich T . Formal Total Synthesis of (±)-Strictamine by [2,3]-Sigmatropic Stevens Rearrangements. Chemistry. 2017; 23(16):3938-3949. DOI: 10.1002/chem.201605361. View

2.
Stavrinides A, Tatsis E, Foureau E, Caputi L, Kellner F, Courdavault V . Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol. 2015; 22(3):336-41. PMC: 4372254. DOI: 10.1016/j.chembiol.2015.02.006. View

3.
Tatsis E, Carqueijeiro I, Duge de Bernonville T, Franke J, Dang T, Oudin A . A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun. 2017; 8(1):316. PMC: 5566405. DOI: 10.1038/s41467-017-00154-x. View

4.
Bayer A, Ma X, Stockigt J . Acetyltransfer in natural product biosynthesis--functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem. 2004; 12(10):2787-95. DOI: 10.1016/j.bmc.2004.02.029. View

5.
St-Pierre B, Laflamme P, Alarco A, De Luca V . The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J. 1998; 14(6):703-13. DOI: 10.1046/j.1365-313x.1998.00174.x. View