» Articles » PMID: 36344569

Differences in Water and Vapor Transport Through Angstrom-scale Pores in Atomically Thin Membranes

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Nov 7
PMID 36344569
Authors
Affiliations
Soon will be listed here.
Abstract

The transport of water through nanoscale capillaries/pores plays a prominent role in biology, ionic/molecular separations, water treatment and protective applications. However, the mechanisms of water and vapor transport through nanoscale confinements remain to be fully understood. Angstrom-scale pores (~2.8-6.6 Å) introduced into the atomically thin graphene lattice represent ideal model systems to probe water transport at the molecular-length scale with short pores (aspect ratio ~1-1.9) i.e., pore diameters approach the pore length (~3.4 Å) at the theoretical limit of material thickness. Here, we report on orders of magnitude differences (~80×) between transport of water vapor (~44.2-52.4 g m day Pa) and liquid water (0.6-2 g m day Pa) through nanopores (~2.8-6.6 Å in diameter) in monolayer graphene and rationalize this difference via a flow resistance model in which liquid water permeation occurs near the continuum regime whereas water vapor transport occurs in the free molecular flow regime. We demonstrate centimeter-scale atomically thin graphene membranes with up to an order of magnitude higher water vapor transport rate (~5.4-6.1 × 10g m day) than most commercially available ultra-breathable protective materials while effectively blocking even sub-nanometer (>0.66 nm) model ions/molecules.

Citing Articles

Scalable Bottom-Up Synthesis of Nanoporous Hexagonal Boron Nitride (-BN) for Large-Area Atomically Thin Ceramic Membranes.

Naclerio A, Cheng P, Hus S, Diulius J, Diulus J, Checa M Nano Lett. 2025; 25(8):3221-3232.

PMID: 39950681 PMC: 11869279. DOI: 10.1021/acs.nanolett.4c05939.


Overcoming the Conductance versus Crossover Trade-off in State-of-the-Art Proton Exchange Fuel-Cell Membranes by Incorporating Atomically Thin Chemical Vapor Deposition Graphene.

Moehring N, Mansoor Basha A, Chaturvedi P, Knight T, Fan X, Pintauro P Nano Lett. 2025; 25(3):1165-1176.

PMID: 39803947 PMC: 11760178. DOI: 10.1021/acs.nanolett.4c05725.


Protein-Enabled Size-Selective Defect-Sealing of Atomically Thin 2D Membranes for Dialysis and Nanoscale Separations.

Cheng P, Ferrell N, Hus S, Moehring N, Coupin M, Warner J Nano Lett. 2024; 25(1):193-203.

PMID: 39714067 PMC: 11719630. DOI: 10.1021/acs.nanolett.4c04706.


2D Carbonaceous Materials for Molecular Transport and Functional Interfaces: Simulations and Insights.

Tong Y, Dai S, Jiang D Acc Chem Res. 2024; 57(18):2678-2688.

PMID: 39190683 PMC: 11411710. DOI: 10.1021/acs.accounts.4c00398.


Polyoxometalate Clusters Confined in Reduced Graphene Oxide Membranes for Effective Ion Sieving and Desalination.

Yang Y, Zhao W, Liu Y, Wang Q, Song Z, Zhuang Q Adv Sci (Weinh). 2024; 11(36):e2402018.

PMID: 38887207 PMC: 11422814. DOI: 10.1002/advs.202402018.


References
1.
Surwade S, Smirnov S, Vlassiouk I, Unocic R, Veith G, Dai S . Water desalination using nanoporous single-layer graphene. Nat Nanotechnol. 2015; 10(5):459-64. DOI: 10.1038/nnano.2015.37. View

2.
Jiang Z, Liu H, Ahmed S, Hanif S, Ren S, Xu J . Insight into Ion Transfer through the Sub-Nanometer Channels in Zeolitic Imidazolate Frameworks. Angew Chem Int Ed Engl. 2017; 56(17):4767-4771. DOI: 10.1002/anie.201701279. View

3.
Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W . Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc Natl Acad Sci U S A. 2007; 104(52):20719-24. PMC: 2410068. DOI: 10.1073/pnas.0708762104. View

4.
Licsandru E, Kocsis I, Shen Y, Murail S, Legrand Y, van der Lee A . Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation. J Am Chem Soc. 2016; 138(16):5403-9. DOI: 10.1021/jacs.6b01811. View

5.
OHern S, Jang D, Bose S, Idrobo J, Song Y, Laoui T . Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene. Nano Lett. 2015; 15(5):3254-60. DOI: 10.1021/acs.nanolett.5b00456. View