» Articles » PMID: 36335012

The Challenges of Lifelong Learning in Biological and Artificial Systems

Overview
Journal Trends Cogn Sci
Date 2022 Nov 5
PMID 36335012
Authors
Affiliations
Soon will be listed here.
Abstract

How do biological systems learn continuously throughout their lifespans, adapting to change while retaining old knowledge, and how can these principles be applied to artificial learning systems? In this Forum article we outline challenges and strategies of 'lifelong learning' in biological and artificial systems, and argue that a collaborative study of each system's failure modes can benefit both.

Citing Articles

Learning environment-specific learning rates.

Simoens J, Verguts T, Braem S PLoS Comput Biol. 2024; 20(3):e1011978.

PMID: 38517916 PMC: 10990245. DOI: 10.1371/journal.pcbi.1011978.


The Computational and Neural Bases of Context-Dependent Learning.

Heald J, Wolpert D, Lengyel M Annu Rev Neurosci. 2023; 46:233-258.

PMID: 36972611 PMC: 10348919. DOI: 10.1146/annurev-neuro-092322-100402.

References
1.
Cohen R, Kahana M . A memory-based theory of emotional disorders. Psychol Rev. 2022; 129(4):742-776. PMC: 9256582. DOI: 10.1037/rev0000334. View

2.
Norbury A, Brinkman H, Kowalchyk M, Monti E, Pietrzak R, Schiller D . Latent cause inference during extinction learning in trauma-exposed individuals with and without PTSD. Psychol Med. 2021; :1-12. DOI: 10.1017/S0033291721000647. View

3.
Heald J, Lengyel M, Wolpert D . Contextual inference underlies the learning of sensorimotor repertoires. Nature. 2021; 600(7889):489-493. PMC: 8809113. DOI: 10.1038/s41586-021-04129-3. View

4.
Schulz E, Dayan P . Computational Psychiatry for Computers. iScience. 2020; 23(12):101772. PMC: 7691174. DOI: 10.1016/j.isci.2020.101772. View

5.
Pisupati S, Chartarifsky-Lynn L, Khanal A, Churchland A . Lapses in perceptual decisions reflect exploration. Elife. 2021; 10. PMC: 7846276. DOI: 10.7554/eLife.55490. View