6.
Lu S, Yang C, Fan D, Hu X
. Perfect planar tetra-coordinated MC monolayer: superior anode material for Li-ion battery. Phys Chem Chem Phys. 2019; 21(27):15187-15194.
DOI: 10.1039/c9cp01825e.
View
7.
Liu J, Zhang C, Xu L, Ju S
. Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT. RSC Adv. 2022; 8(32):17773-17785.
PMC: 9080496.
DOI: 10.1039/c8ra01942h.
View
8.
Li R, Wang Y, Xu L, Shen J, Zhao W, Yang Z
. A boron-exposed TiB monolayer with a lower electrostatic-potential surface as a higher-performance anode material for Li-ion and Na-ion batteries. Phys Chem Chem Phys. 2020; 22(39):22236-22243.
DOI: 10.1039/d0cp04204h.
View
9.
Zhang X, Hu J, Cheng Y, Yang H, Yao Y, Yang S
. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale. 2016; 8(33):15340-7.
DOI: 10.1039/c6nr04186h.
View
10.
Zhang C, Zhang S, Wang Q
. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers. Sci Rep. 2016; 6:29531.
PMC: 4941692.
DOI: 10.1038/srep29531.
View
11.
Perdew , Chevary , Vosko , Jackson , Pederson , Singh
. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter. 1992; 46(11):6671-6687.
DOI: 10.1103/physrevb.46.6671.
View
12.
Joswig J, Springborg M
. The influence of C2 dimers on the stability of Ti(m)C(n) metcar clusters. J Chem Phys. 2008; 129(13):134311.
DOI: 10.1063/1.2989958.
View
13.
Er D, Li J, Naguib M, Gogotsi Y, Shenoy V
. Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces. 2014; 6(14):11173-9.
DOI: 10.1021/am501144q.
View
14.
Tang Q, Zhou Z, Shen P
. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc. 2012; 134(40):16909-16.
DOI: 10.1021/ja308463r.
View
15.
Grimme S
. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006; 27(15):1787-99.
DOI: 10.1002/jcc.20495.
View
16.
Xie Y, DallAgnese Y, Naguib M, Gogotsi Y, Barsoum M, Zhuang H
. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano. 2014; 8(9):9606-15.
DOI: 10.1021/nn503921j.
View
17.
Gao B, Gao P, Lu S, Lv J, Wang Y, Ma Y
. Interface structure prediction via CALYPSO method. Sci Bull (Beijing). 2023; 64(5):301-309.
DOI: 10.1016/j.scib.2019.02.009.
View
18.
Jia J, Wei S, Cai Q, Zhao J
. Two-dimensional IrN monolayer: An efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J Colloid Interface Sci. 2021; 600:711-718.
DOI: 10.1016/j.jcis.2021.05.028.
View
19.
Bo T, Liu P, Xu J, Zhang J, Chen Y, Eriksson O
. Hexagonal TiB monolayer: a promising anode material offering high rate capability for Li-ion and Na-ion batteries. Phys Chem Chem Phys. 2018; 20(34):22168-22178.
DOI: 10.1039/c8cp03362e.
View
20.
Naguib M, Halim J, Lu J, Cook K, Hultman L, Gogotsi Y
. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc. 2013; 135(43):15966-9.
DOI: 10.1021/ja405735d.
View