» Articles » PMID: 36318239

TmAlphaFold Database: Membrane Localization and Evaluation of AlphaFold2 Predicted Alpha-helical Transmembrane Protein Structures

Overview
Specialty Biochemistry
Date 2022 Nov 1
PMID 36318239
Authors
Affiliations
Soon will be listed here.
Abstract

AI-driven protein structure prediction, most notably AlphaFold2 (AF2) opens new frontiers for almost all fields of structural biology. As traditional structure prediction methods for transmembrane proteins were both complicated and error prone, AF2 is a great help to the community. Complementing the relatively meager number of experimental structures, AF2 provides 3D predictions for thousands of new alpha-helical membrane proteins. However, the lack of reliable structural templates and the fact that AF2 was not trained to handle phase boundaries also necessitates a delicate assessment of structural correctness. In our new database, Transmembrane AlphaFold database (TmAlphaFold database), we apply TMDET, a simple geometry-based method to visualize the likeliest position of the membrane plane. In addition, we calculate several parameters to evaluate the location of the protein into the membrane. This also allows TmAlphaFold database to show whether the predicted 3D structure is realistic or not. The TmAlphaFold database is available at https://tmalphafold.ttk.hu/.

Citing Articles

Frontiers in integrative structural modeling of macromolecular assemblies.

Majila K, Arvindekar S, Jindal M, Viswanath S QRB Discov. 2025; 6:e3.

PMID: 39944881 PMC: 11811862. DOI: 10.1017/qrd.2024.15.


MatE transporter affects methane metabolism in Methermicoccus shengliensis and is modulated by methoxylated aromatic compounds.

Leng H, Wang D, Yang Q, Wang S, Guo L, Zhao P Commun Biol. 2025; 8(1):183.

PMID: 39910354 PMC: 11799446. DOI: 10.1038/s42003-025-07583-1.


Transmembrane proteins in grape immunity: current knowledge and methodological advances.

Gallucci A, Giordano D, Facchiano A, Villano C, Carputo D, Aversano R Front Plant Sci. 2025; 15:1515163.

PMID: 39759230 PMC: 11695348. DOI: 10.3389/fpls.2024.1515163.


An outlook on structural biology after AlphaFold: tools, limits and perspectives.

Rosignoli S, Pacelli M, Manganiello F, Paiardini A FEBS Open Bio. 2024; 15(2):202-222.

PMID: 39313455 PMC: 11788754. DOI: 10.1002/2211-5463.13902.


AlphaFold two years on: Validation and impact.

Kovalevskiy O, Mateos-Garcia J, Tunyasuvunakool K Proc Natl Acad Sci U S A. 2024; 121(34):e2315002121.

PMID: 39133843 PMC: 11348012. DOI: 10.1073/pnas.2315002121.


References
1.
Bowie J . Solving the membrane protein folding problem. Nature. 2005; 438(7068):581-9. DOI: 10.1038/nature04395. View

2.
Dobson L, Remenyi I, Tusnady G . CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res. 2015; 43(W1):W408-12. PMC: 4489262. DOI: 10.1093/nar/gkv451. View

3.
Sehnal D, Bittrich S, Deshpande M, Svobodova R, Berka K, Bazgier V . Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49(W1):W431-W437. PMC: 8262734. DOI: 10.1093/nar/gkab314. View

4.
Lomize M, Pogozheva I, Joo H, Mosberg H, Lomize A . OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2011; 40(Database issue):D370-6. PMC: 3245162. DOI: 10.1093/nar/gkr703. View

5.
Dobson L, Remenyi I, Tusnady G . The human transmembrane proteome. Biol Direct. 2015; 10:31. PMC: 4445273. DOI: 10.1186/s13062-015-0061-x. View