» Articles » PMID: 36316792

Mobile Genetic Elements in Acinetobacter Antibiotic-resistance Acquisition and Dissemination

Overview
Specialty Science
Date 2022 Nov 1
PMID 36316792
Authors
Affiliations
Soon will be listed here.
Abstract

Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of β-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.

Citing Articles

Rapid Simultaneous Detection of the Clinically Relevant Carbapenemase Resistance Genes KPC, OXA48, VIM and NDM with the Newly Developed Ready-to-Use qPCR CarbaScan LyoBead.

Reinicke M, Diezel C, Teimoori S, Haase B, Monecke S, Ehricht R Int J Mol Sci. 2025; 26(3).

PMID: 39940986 PMC: 11818240. DOI: 10.3390/ijms26031218.


Targeting Acinetobacter baumannii resistance-nodulation-division efflux pump transcriptional regulators to combat antimicrobial resistance.

Wimalasekara R, White D, Kumar A NPJ Antimicrob Resist. 2025; 3(1):4.

PMID: 39863717 PMC: 11762787. DOI: 10.1038/s44259-024-00074-z.


Clonality and the Phenotype-Genotype Correlation of Antimicrobial Resistance in Isolates: A Multicenter Study of Clinical Isolates from Romania.

Pana A, Schiopu P, Toc D, Neculicioiu V, Butiuc-Keul A, Farkas A Microorganisms. 2025; 13(1).

PMID: 39858944 PMC: 11767935. DOI: 10.3390/microorganisms13010176.


Whole genome analysis revealed the role of and genes in carbapenem resistance of strains.

Mat Ghani N, Hong K, Liew Y, Lau Y, Yong H, Tee K Pathog Glob Health. 2024; 119(1-2):10-21.

PMID: 39699991 PMC: 11905307. DOI: 10.1080/20477724.2024.2442194.


Treatment Approaches for Carbapenem-Resistant Acinetobacter baumannii Infections.

Iovleva A, Fowler Jr V, Doi Y Drugs. 2024; 85(1):21-40.

PMID: 39607595 DOI: 10.1007/s40265-024-02104-6.


References
1.
Hamidian M, Nigro S . Emergence, molecular mechanisms and global spread of carbapenem-resistant . Microb Genom. 2019; 5(10). PMC: 6861865. DOI: 10.1099/mgen.0.000306. View

2.
Chagas T, Tavares E Oliveira T, DAlincourt Carvalho-Assef A, Albano R, Asensi M . Carbapenem-resistant Acinetobacter pittii strain harboring bla from Brazil. Diagn Microbiol Infect Dis. 2017; 88(1):93-94. DOI: 10.1016/j.diagmicrobio.2017.01.022. View

3.
Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P . Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob Agents Chemother. 2010; 54(11):4914-6. PMC: 2976126. DOI: 10.1128/AAC.00878-10. View

4.
Benler S, Faure G, Altae-Tran H, Shmakov S, Zheng F, Koonin E . Cargo Genes of Tn-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. mBio. 2021; 12(6):e0293821. PMC: 8649781. DOI: 10.1128/mBio.02938-21. View

5.
Trebosc V, Gartenmann S, Totzl M, Lucchini V, Schellhorn B, Pieren M . Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. mBio. 2019; 10(4). PMC: 6635527. DOI: 10.1128/mBio.01083-19. View