» Articles » PMID: 36310646

Impairment of Antiviral Immune Response and Disruption of Cellular Functions by SARS-CoV-2 ORF7a and ORF7b

Abstract

SARS-CoV-2, the causative agent of the present COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome, and some have been implicated in facilitating infection and pathogenesis through their interaction with cellular components. Among these proteins, accessory protein ORF7a and ORF7b functions are poorly understood. In this study, A549 cells were transduced to express ORF7a and ORF7b, respectively, to explore more in depth the role of each accessory protein in the pathological manifestation leading to COVID-19. Bioinformatic analysis and integration of transcriptome results identified defined canonical pathways and functional groupings revealing that after expression of ORF7a or ORF7b, the lung cells are potentially altered to create conditions more favorable for SARS-CoV-2, by inhibiting the IFN-I response, increasing proinflammatory cytokines release, and altering cell metabolic activity and adhesion. Based on these results, it is plausible to suggest that ORF7a or ORF7b could be used as biomarkers of progression in this pandemic.

Citing Articles

Analysis of the structure and interactions of the SARS-CoV-2 ORF7b accessory protein.

Nguyen M, Palfy G, Fogeron M, Ninot Pedrosa M, Zehnder J, rimal V Proc Natl Acad Sci U S A. 2024; 121(46):e2407731121.

PMID: 39508769 PMC: 11573672. DOI: 10.1073/pnas.2407731121.


MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients.

Maiti A Clin Rev Allergy Immunol. 2024; 67(1-3):58-72.

PMID: 39460899 DOI: 10.1007/s12016-024-09008-z.


Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness.

Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q Viruses. 2024; 16(2).

PMID: 38399960 PMC: 10893260. DOI: 10.3390/v16020184.


SARS-CoV-2 Accessory Protein Orf7b Induces Lung Injury via c-Myc Mediated Apoptosis and Ferroptosis.

Deshpande R, Li W, Li T, Fanning K, Clemens Z, Nyunoya T Int J Mol Sci. 2024; 25(2).

PMID: 38256231 PMC: 10816122. DOI: 10.3390/ijms25021157.


Analysis of SARS-CoV-2 genome evolutionary patterns.

Gupta S, Gupta D, Bhatnagar S Microbiol Spectr. 2024; 12(2):e0265423.

PMID: 38197644 PMC: 10846092. DOI: 10.1128/spectrum.02654-23.


References
1.
Sa Ribero M, Jouvenet N, Dreux M, Nisole S . Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020; 16(7):e1008737. PMC: 7390284. DOI: 10.1371/journal.ppat.1008737. View

2.
Ellis P, Somogyvari F, Virok D, Noseda M, McLean G . Decoding Covid-19 with the SARS-CoV-2 Genome. Curr Genet Med Rep. 2021; 9(1):1-12. PMC: 7794078. DOI: 10.1007/s40142-020-00197-5. View

3.
Jiang H, Zhang H, Meng Q, Xie J, Li Y, Chen H . SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell Mol Immunol. 2020; 17(9):998-1000. PMC: 7387808. DOI: 10.1038/s41423-020-0514-8. View

4.
Ma Y, Qin J, Plow E . Platelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost. 2007; 5(7):1345-52. DOI: 10.1111/j.1538-7836.2007.02537.x. View

5.
Zost S, Gilchuk P, Case J, Binshtein E, Chen R, Nkolola J . Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020; 584(7821):443-449. PMC: 7584396. DOI: 10.1038/s41586-020-2548-6. View