» Articles » PMID: 36307907

Extreme Weather Events Threaten Biodiversity and Functions of River Ecosystems: Evidence from a Meta-analysis

Overview
Specialty Biology
Date 2022 Oct 29
PMID 36307907
Authors
Affiliations
Soon will be listed here.
Abstract

Both gradual and extreme weather changes trigger complex ecological responses in river ecosystems. It is still unclear to what extent trend or event effects alter biodiversity and functioning in river ecosystems, adding considerable uncertainty to predictions of their future dynamics. Using a comprehensive database of 71 published studies, we show that event - but not trend - effects associated with extreme changes in water flow and temperature substantially reduce species richness. Furthermore, event effects - particularly those affecting hydrological dynamics - on biodiversity and primary productivity were twice as high as impacts due to gradual changes. The synthesis of the available evidence reveals that event effects induce regime shifts in river ecosystems, particularly affecting organisms such as invertebrates. Among extreme weather events, dryness associated with flow interruption caused the largest effects on biota and ecosystem functions in rivers. Effects on ecosystem functions (primary production, organic matter decomposition and respiration) were asymmetric, with only primary production exhibiting a negative response to extreme weather events. Our meta-analysis highlights the disproportionate impact of event effects on river biodiversity and ecosystem functions, with implications for the long-term conservation and management of river ecosystems. However, few studies were available from tropical areas, and our conclusions therefore remain largely limited to temperate river systems. Further efforts need to be directed to assemble evidence of extreme events on river biodiversity and functioning.

Citing Articles

Biological traits and biome features mediate responses of terrestrial bird demography to droughts.

Zhang L, Ma Z, Liu Y J Anim Ecol. 2024; 93(12):1868-1880.

PMID: 39478288 PMC: 11615269. DOI: 10.1111/1365-2656.14195.


Fertility loss and recovery dynamics after repeated heat stress across life stages in male : patterns and processes.

Meena A, De Nardo A, Maggu K, Sbilordo S, Roy J, Snook R R Soc Open Sci. 2024; 11(10):241082.

PMID: 39359471 PMC: 11444773. DOI: 10.1098/rsos.241082.


BioSense: An automated sensing node for organismal and environmental biology.

Contina A, Abelson E, Allison B, Stokes B, Sanchez K, Hernandez H HardwareX. 2024; 20:e00584.

PMID: 39314536 PMC: 11417332. DOI: 10.1016/j.ohx.2024.e00584.


Insights from single-strain and mixed culture experiments on the effects of heatwaves on freshwater flagellates.

Boden L, Klagus C, Boenigk J PeerJ. 2024; 12:e17912.

PMID: 39282123 PMC: 11402338. DOI: 10.7717/peerj.17912.


Terrestrialization of sediment bacterial assemblages when temporary rivers run dry.

Freixa A, Gonzalez-Trujillo J, Sacristan-Soriano O, Borrego C, Sabater S FEMS Microbiol Ecol. 2024; 100(10).

PMID: 39277783 PMC: 11460285. DOI: 10.1093/femsec/fiae126.