» Articles » PMID: 36304719

General and Specialized Tyrosine Metabolism Pathways in Plants

Overview
Journal aBIOTECH
Publisher Springer
Date 2022 Oct 28
PMID 36304719
Authors
Affiliations
Soon will be listed here.
Abstract

The tyrosine metabolism pathway serves as a starting point for the production of a variety of structurally diverse natural compounds in plants, such as tocopherols, plastoquinone, ubiquinone, betalains, salidroside, benzylisoquinoline alkaloids, and so on. Among these, tyrosine-derived metabolites, tocopherols, plastoquinone, and ubiquinone are essential to plant survival. In addition, this pathway provides us essential micronutrients (e.g., vitamin E and ubiquinone) and medicine (e.g., morphine, salidroside, and salvianolic acid B). However, our knowledge of the plant tyrosine metabolism pathway remains rudimentary, and genes encoding the pathway enzymes have not been fully defined. In this review, we summarize and discuss recent advances in the tyrosine metabolism pathway, key enzymes, and important tyrosine-derived metabolites in plants.

Citing Articles

Investigation on Rational Utilization of Medicinal Plant Chang Leaf and Bark at Different Developmental Stages.

Li J, Geng Z, Yuan Y, Wang M, Zhang Y, Wang J Metabolites. 2025; 15(2).

PMID: 39997723 PMC: 11857821. DOI: 10.3390/metabo15020098.


Insights into the Role of Genes in Tyrosine Metabolism and Drought Stress Tolerance in Cotton.

Mehari T, Tang J, Gu H, Fang H, Han J, Zheng J Int J Mol Sci. 2025; 26(3).

PMID: 39941123 PMC: 11818400. DOI: 10.3390/ijms26031355.


Complete pathway elucidation of echinacoside in Cistanche tubulosa and de novo biosynthesis of phenylethanoid glycosides.

Huang W, Yan Y, Tian W, Cui X, Wang Y, Song Y Nat Commun. 2025; 16(1):882.

PMID: 39837891 PMC: 11751479. DOI: 10.1038/s41467-025-56243-9.


Halophyte-based crop managements induce biochemical, metabolomic and proteomic changes in tomato plants under saline conditions.

Barba-Espin G, Jurado-Manogil C, Plskova Z, Kerchev P, Hernandez J, Diaz-Vivancos P Physiol Plant. 2025; 177(1):e70060.

PMID: 39822104 PMC: 11739548. DOI: 10.1111/ppl.70060.


Transcriptome Analysis Reveals the Molecular Mechanisms of Carrot Adaptation to Alternaria Leaf Blight.

Liang C, Zhao D, Ou C, Zhao Z, Zhuang F, Liu X Int J Mol Sci. 2024; 25(23).

PMID: 39684815 PMC: 11642675. DOI: 10.3390/ijms252313106.


References
1.
Norris S, Barrette T, Dellapenna D . Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell. 1995; 7(12):2139-49. PMC: 161068. DOI: 10.1105/tpc.7.12.2139. View

2.
Schenck C, Maeda H . Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 2018; 149:82-102. DOI: 10.1016/j.phytochem.2018.02.003. View

3.
Riewe D, Koohi M, Lisec J, Pfeiffer M, Lippmann R, Schmeichel J . A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J. 2012; 71(5):850-9. DOI: 10.1111/j.1365-313X.2012.05035.x. View

4.
Ru M, Wang K, Bai Z, Peng L, He S, Wang Y . A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L. Sci Rep. 2017; 7(1):4892. PMC: 5501851. DOI: 10.1038/s41598-017-05290-4. View

5.
Wang M, Toda K, Block A, Maeda H . TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in . J Biol Chem. 2019; 294(10):3563-3576. PMC: 6416433. DOI: 10.1074/jbc.RA118.006539. View