» Articles » PMID: 36303761

Raw Data to Results: A Hands-On Introduction and Overview of Computational Analysis for Single-Molecule Localization Microscopy

Overview
Journal Front Bioinform
Specialty Biology
Date 2022 Oct 28
PMID 36303761
Authors
Affiliations
Soon will be listed here.
Abstract

Single-molecule localization microscopy (SMLM) is an advanced microscopy method that uses the blinking of fluorescent molecules to determine the position of these molecules with a resolution below the diffraction limit (∼5-40 nm). While SMLM imaging itself is becoming more popular, the computational analysis surrounding the technique is still a specialized area and often remains a "black box" for experimental researchers. Here, we provide an introduction to the required computational analysis of SMLM imaging, post-processing and typical data analysis. Importantly, user-friendly, ready-to-use and well-documented code in Python and MATLAB with exemplary data is provided as an interactive experience for the reader, as well as a starting point for further analysis. Our code is supplemented by descriptions of the computational problems and their implementation. We discuss the state of the art in computational methods and software suites used in SMLM imaging and data analysis. Finally, we give an outlook into further computational challenges in the field.

Citing Articles

Single Extracellular VEsicle Nanoscopy-Universal Protocol (SEVEN-UP): Accessible Imaging Platform for Quantitative Characterization of Single Extracellular Vesicles.

Saftics A, Purnell B, Beres B, Thompson S, Jiang N, Ghaeli I Anal Chem. 2025; 97(3):1654-1664.

PMID: 39804668 PMC: 11780574. DOI: 10.1021/acs.analchem.4c04614.


Optimized molecule detection in localization microscopy with selected false positive probability.

Hekrdla M, Roesel D, Hansen N, Frederick S, Umar K, Petrakova V Nat Commun. 2025; 16(1):601.

PMID: 39799127 PMC: 11724879. DOI: 10.1038/s41467-025-55952-5.


Graph-Based Spatial Proximity of Super-Resolved Protein-Protein Interactions Predicts Cancer Drug Responses in Single Cells.

Zhang N, Cai S, Wang M, Hu T, Schneider F, Sun S Cell Mol Bioeng. 2024; 17(5):467-490.

PMID: 39513000 PMC: 11538221. DOI: 10.1007/s12195-024-00822-1.


Triggered cagedSTORM microscopy.

Biro P, Novak T, Czvik E, Mihaly J, Szikora S, van de Linde S Biomed Opt Express. 2024; 15(6):3715-3726.

PMID: 38867795 PMC: 11166440. DOI: 10.1364/BOE.517480.


Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy.

Friedl K, Mau A, Boroni-Rueda F, Caorsi V, Bourg N, Leveque-Fort S Cell Rep Methods. 2023; 3(9):100571.

PMID: 37751691 PMC: 10545913. DOI: 10.1016/j.crmeth.2023.100571.


References
1.
Endesfelder U, Malkusch S, Fricke F, Heilemann M . A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol. 2014; 141(6):629-38. DOI: 10.1007/s00418-014-1192-3. View

2.
Tinevez J, Perry N, Schindelin J, Hoopes G, Reynolds G, Laplantine E . TrackMate: An open and extensible platform for single-particle tracking. Methods. 2016; 115:80-90. DOI: 10.1016/j.ymeth.2016.09.016. View

3.
Franke C, Sauer M, van de Linde S . Photometry unlocks 3D information from 2D localization microscopy data. Nat Methods. 2016; 14(1):41-44. DOI: 10.1038/nmeth.4073. View

4.
Smith C, Joseph N, Rieger B, Lidke K . Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods. 2010; 7(5):373-5. PMC: 2862147. DOI: 10.1038/nmeth.1449. View

5.
Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I . Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol. 2015; 99(4):767-77. PMC: 4752901. DOI: 10.1111/mmi.13264. View