6.
Liu B, Liu F, Wang X, Chen J, Fang L, Chou K
. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015; 43(W1):W65-71.
PMC: 4489303.
DOI: 10.1093/nar/gkv458.
View
7.
Kumar K, Pugalenthi G, Suganthan P
. DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest. J Biomol Struct Dyn. 2009; 26(6):679-86.
DOI: 10.1080/07391102.2009.10507281.
View
8.
Sun H
. A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing. J Med Chem. 2005; 48(12):4031-9.
DOI: 10.1021/jm050180t.
View
9.
Lin W, Fang J, Xiao X, Chou K
. iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PLoS One. 2011; 6(9):e24756.
PMC: 3174210.
DOI: 10.1371/journal.pone.0024756.
View
10.
Galili T
. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015; 31(22):3718-20.
PMC: 4817050.
DOI: 10.1093/bioinformatics/btv428.
View
11.
Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F
. deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics. 2019; 35(24):5191-5198.
PMC: 6954645.
DOI: 10.1093/bioinformatics/btz418.
View
12.
Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W
. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17):3389-402.
PMC: 146917.
DOI: 10.1093/nar/25.17.3389.
View
13.
Lu W, Song Z, Ding Y, Wu H, Cao Y, Zhang Y
. Use Chou's 5-Step Rule to Predict DNA-Binding Proteins with Evolutionary Information. Biomed Res Int. 2020; 2020:6984045.
PMC: 7407024.
DOI: 10.1155/2020/6984045.
View
14.
Hosmer D, Hosmer T, le Cessie S, Lemeshow S
. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997; 16(9):965-80.
DOI: 10.1002/(sici)1097-0258(19970515)16:9<965::aid-sim509>3.0.co;2-o.
View
15.
Guo Y, Yu L, Wen Z, Li M
. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res. 2008; 36(9):3025-30.
PMC: 2396404.
DOI: 10.1093/nar/gkn159.
View
16.
Gao M, Skolnick J
. DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions. Nucleic Acids Res. 2008; 36(12):3978-92.
PMC: 2475642.
DOI: 10.1093/nar/gkn332.
View
17.
Liu B, Wang S, Dong Q, Li S, Liu X
. Identification of DNA-binding proteins by combining auto-cross covariance transformation and ensemble learning. IEEE Trans Nanobioscience. 2017; 15(4):328-334.
DOI: 10.1109/TNB.2016.2555951.
View
18.
Lou W, Wang X, Chen F, Chen Y, Jiang B, Zhang H
. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes. PLoS One. 2014; 9(1):e86703.
PMC: 3901691.
DOI: 10.1371/journal.pone.0086703.
View
19.
Nguyen T, Le N, Kusuma R, Ou Y
. Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network. J Mol Graph Model. 2019; 92:86-93.
DOI: 10.1016/j.jmgm.2019.07.003.
View
20.
ArunKumar K, Kalaga D, Kumar C, Kawaji M, Brenza T
. Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells. Chaos Solitons Fractals. 2021; 146:110861.
PMC: 7955925.
DOI: 10.1016/j.chaos.2021.110861.
View