6.
Shepelin D, Korzinkin M, Vanyushina A, Aliper A, Borisov N, Vasilov R
. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget. 2015; 7(1):656-70.
PMC: 4808024.
DOI: 10.18632/oncotarget.6394.
View
7.
Gao S, Wang P, Feng Y, Xie X, Duan M, Fan Y
. RIFS2D: A two-dimensional version of a randomly restarted incremental feature selection algorithm with an application for detecting low-ranked biomarkers. Comput Biol Med. 2021; 133:104405.
DOI: 10.1016/j.compbiomed.2021.104405.
View
8.
Davis D, Robinson C, Callender V
. Skin cancer in women of color: Epidemiology, pathogenesis and clinical manifestations. Int J Womens Dermatol. 2021; 7(2):127-134.
PMC: 8072498.
DOI: 10.1016/j.ijwd.2021.01.017.
View
9.
Cooper R, Chung J, Hogan T, Haque R
. Patterns of overall mortality by race/ethnicity and socioeconomic status in insured cancer patients in Southern California. Cancer Causes Control. 2021; 32(6):609-616.
PMC: 8089073.
DOI: 10.1007/s10552-021-01414-4.
View
10.
Ma E, Hoegler K, Zhou A
. Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review. Genes (Basel). 2021; 12(11).
PMC: 8621295.
DOI: 10.3390/genes12111751.
View
11.
Yan K, Wang Y, Shao Y, Xiao T
. Gene Instability-Related lncRNA Prognostic Model of Melanoma Patients via Machine Learning Strategy. J Oncol. 2021; 2021:5582920.
PMC: 8169244.
DOI: 10.1155/2021/5582920.
View
12.
Mancuso F, Lage S, Rasero J, Diaz-Ramon J, Apraiz A, Perez-Yarza G
. Serum markers improve current prediction of metastasis development in early-stage melanoma patients: a machine learning-based study. Mol Oncol. 2020; 14(8):1705-1718.
PMC: 7400797.
DOI: 10.1002/1878-0261.12732.
View
13.
Guhan S, Boland G, Tanabe K, Lin W, Reddy B, Hawryluk E
. Surgical delay and mortality for primary cutaneous melanoma. J Am Acad Dermatol. 2020; 84(4):1089-1091.
PMC: 7375294.
DOI: 10.1016/j.jaad.2020.07.078.
View
14.
Mo Q, Wan L, Schell M, Jim H, Tworoger S, Peng G
. Integrative Analysis Identifies Multi-Omics Signatures That Drive Molecular Classification of Uveal Melanoma. Cancers (Basel). 2021; 13(24).
PMC: 8699355.
DOI: 10.3390/cancers13246168.
View
15.
Garg M, Couturier D, Nsengimana J, Fonseca N, Wongchenko M, Yan Y
. Tumour gene expression signature in primary melanoma predicts long-term outcomes. Nat Commun. 2021; 12(1):1137.
PMC: 7893180.
DOI: 10.1038/s41467-021-21207-2.
View
16.
Clavel J, Aristide L, Morlon H
. A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution. Syst Biol. 2018; 68(1):93-116.
DOI: 10.1093/sysbio/syy045.
View
17.
Thomas S, Lefevre J, Baxter G, Hamilton N
. Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer. Med Image Anal. 2020; 68:101915.
DOI: 10.1016/j.media.2020.101915.
View
18.
Saleem A, Bhatti N, Ashraf A, Zia M, Mehmood H
. Segmentation and classification of consumer-grade and dermoscopic skin cancer images using hybrid textural analysis. J Med Imaging (Bellingham). 2019; 6(3):034501.
PMC: 6683676.
DOI: 10.1117/1.JMI.6.3.034501.
View
19.
Milberg O, Gong C, Jafarnejad M, Bartelink I, Wang B, Vicini P
. A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade. Sci Rep. 2019; 9(1):11286.
PMC: 6677731.
DOI: 10.1038/s41598-019-47802-4.
View
20.
Urbanowicz R, Meeker M, La Cava W, Olson R, Moore J
. Relief-based feature selection: Introduction and review. J Biomed Inform. 2018; 85:189-203.
PMC: 6299836.
DOI: 10.1016/j.jbi.2018.07.014.
View